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Inclusive decays of heavy quarkonium to light particles
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We derive the imaginary part of the potential nonrelativistic QCD~pNRQCD! Hamiltonian up to order 1/m4,
when the typical momentum transfer between the heavy quarks is of the order ofLQCD or greater, and the
binding energyE much smaller thanLQCD. We use this result to calculate the inclusive decay widths into light
hadrons, photons and lepton pairs, up toO„mv33(LQCD

2 /m2,E/m)… andO(mv5) times a short-distance coef-
ficient, for S- andP-wave heavy quarkonium states, respectively. We achieve a large reduction in the number
of unknown nonperturbative parameters and, therefore, we obtain new model-independent QCD predictions.
All the NRQCD matrix elements relevant to that order are expressed in terms of the wave functions at the
origin and six universal nonperturbative parameters. The wave-function dependence factorizes and drops out in
the ratio of hadronic and electromagnetic decay widths. The universal nonperturbative parameters are ex-
pressed in terms of gluonic field-strength correlators, which may be fixed by experimental data or, alternatively,
by lattice simulations. Our expressions are expected to hold for most of the charmonium and bottomonium
states below threshold. The calculations and methodology are explained in detail so that the evaluation of
higher order NRQCD matrix elements in this framework should be straightforward. An example is provided.

DOI: 10.1103/PhysRevD.67.034018 PACS number~s!: 12.38.2t, 12.39.Hg, 13.25.Gv
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I. INTRODUCTION

Heavy quarkonium is characterized by the small relat
velocity v of the heavy quarks in their center-of-mass fram
This small parameter produces a hierarchy of widely se
rated scales once multiplied by the massm of the heavy
particle:m ~hard!, mv ~soft!, mv2 ~ultrasoft!, etc. In general,
we haveE;mv2!p;mv!m, whereE is the binding en-
ergy andp the relative three-momentum.

The use of nonrelativistic QCD~NRQCD! @1# allowed a
factorization of the physics due to the scalem from that due
to smaller scales. Moreover, it allowed the description
heavy quarkonium inclusive decays into light fermions, ph
tons, and leptons, in terms of matrix elements of local fo
quark operators, in a systematic way. These four-quark
erators are of two types: color-singlet and color-oc
operators. The matrix elements of the color-singlet opera
can be related in a rigorous way with quantum field the
defined quarkonium wave functions@1#. Intuitively, these
wave functions should be related to the wave functions
appear in a Schro¨dinger-like formulation of the bound-stat
system, namely, two heavy quarks interacting through a
tential. On the other hand, the color-octet ones were thou
to have no parallel in that formulation. In either case, ev
though there had been a lot of relevant work in obtaining
QCD potential in terms of Wilson loops@2#, it was not
known how to obtain the systematic connection betwe
NRQCD and a Schro¨dinger-like formulation in the nonper
turbative case, or even whether it existed and, if so, un
which circumstances. Even in the perturbative case,
which expressions for the potential existed at lower order
the past @3#, a clean and simple derivation of such
Schrödinger-like formulation incorporating perturbative u
0556-2821/2003/67~3!/034018~35!/$20.00 67 0340
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trasoft gluons was not clear once higher-order calculation
as were required.

The observation that NRQCD still contains dynamic
scales that are not relevant to the kinematical situation of
lower-lying states in heavy quarkonium~those with energy
scales larger than the ultrasoft scale! @4# ~see also@5#! paved
the way toward the resolution of the questions above. Inde
it was realized that further simplifications occur if we int
grate them out, and the resulting effective field theory w
called potential NRQCD~pNRQCD! @4#. The degrees of
freedom of pNRQCD depend on the interplay between
characteristic scales of the given nonrelativistic syste
namely,E, p, and the momentum transferk, and the charac-
teristic scale of nonperturbative physics in QCD, which w
be denoted byLQCD. Therefore, how a Schro¨dinger-like for-
mulation develops, and thus how the NRQCD four-fermi
matrix elements will show up within this framework, de
pends on the specific kinematic situation considered.

When the typical momentum transferk is much larger
than LQCD, k;p@E*LQCD, the pNRQCD Lagrangian
@4,6# contains not only the singlet field, which is also prese
in the Schro¨dinger-like formulation, but also the octet field
ultrasoft gluons, and light quarks. The matching fro
NRQCD to pNRQCD~integration of the soft scale! can be
done in perturbation theory. In nature, this situation is r
evant to theY(1S) and t- t̄ production near threshold. If in
additionE@LQCD, we are entirely in the weak-coupling re

gime (E;mas
2 , p;k;mas) where nonperturbative ef

fects can be parametrized by local condensates@7#. In this
regime pNRQCD has been used to obtain the complete s
logarithmic corrections to the QCD static potential at thr
loops @8#, the complete set of logarithmic corrections to t
very heavy quarkonium spectrum atO(mas

5) @9# ~see also
©2003 The American Physical Society18-1
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@10#!, the resummation of logs at the same order@11,12#,
and, very recently, the~almost! complete spectrum of very
heavy quarkonium atO(mas

5) @13#. We can still use the
same pNRQCD Lagrangian for systems withE*LQCD.
Then, however, some of the calculations in pNRQCD can
be carried out perturbatively and the nonperturbative effe
can no longer be parametrized by local condensates~see
@7,6#!.

When the typical momentum transferk*LQCD and the
binding energy is small, namely,E!LQCD, the degrees of
freedom of pNRQCD are the singlet field and pseudo Go
stone bosons~pions!, if hybrids and other degrees of freedo
associated with heavy–light meson pair threshold produc
develop a mass gap ofO(LQCD), as is assumed in Refs
@14,15,6# and in what follows. If we ignore Goldston
bosons, which play a negligible role in the present analy
we recover the celebrated Schro¨dinger-like picture of quark
and antiquark interacting through a potential. Therefore,
pNRQCD Lagrangian reads@14,6#

LpNRQCD5Tr$S†~ i ]02h!S%, ~1!

whereh is the pNRQCD Hamiltonian, to be determined b
matching to NRQCD. In general, one should be able to
tain the binding energies and the total decay widths from
real and imaginary parts of the complex poles of the pro
gator. At the accuracy we are aiming at in this paper the t
decay width of the singlet heavy quarkonium state may
defined as

G522 Im^n,l ,s, j uhun,l ,s, j &, ~2!

where un,l ,s, j & are the eigenstates of the real part of t
Hamiltonianh.

In this paper we will be concerned with this situation a
will consider in full detail not only the calculation in th
general case~A! LQCD&k ~Sec. III!, but also the particular
situation~B! LQCD!k ~Sec. V!:

~A! LQCD is smaller than or of the order ofk. In this case,
the ~nonperturbative! matching to pNRQCD has to be don
in a single step. This case has been developed in a system
way in Refs.@14,15#. As a consequence, the complete set
potentials up to order 1/m2 could finally be calculated
@14,15#, including a 1/m potential, which had been missed s
far, and completing~and in some cases correcting! the pre-
vious expressions obtained in the literature@2# for the 1/m2

potential. Most of the charmonium and bottomonium sta
below threshold are expected to be in this situation.

~B! LQCD is much smaller than the typical momentu
transferk. In this case, the degrees of freedom with ene
larger than or similar tok can still be integrated out pertur
batively. This leads to an intermediate effective field theo
~EFT! that contains, in addition to the singlet, also oc
fields and ‘‘ultrasoft’’ gluons~meaning gluons with energie
&LQCD here! as dynamical degrees of freedom@4,6#; it has
the same Lagrangian as pNRQCD in the weak coupling
03401
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gime. We will call this EFT pNRQCD8.1 The octet and ‘‘ul-
trasoft’’ gluon fields are eventually integrated out by t
~nonperturbative! matching to pNRQCD@6#.

In either case, it remained to be seen how the ma
elements of the four-fermion operators are encoded in
formulation. This was especially needed for the octet o
since, as mentioned before, it was thought that they could
be accommodated in a Schro¨dinger-like formulation. How-
ever, in @16#, we have shown that, by using pNRQCD, it
indeed possible to relate the matrix elements of the co
octet operator with the wave function at the origin and ad
tional bound-state independent nonperturbative parame
This was done for the specific case ofP-wave quarkonium
decays. Here, we will apply the same method to express
the NRQCD matrix elements relevant to inclusiveS-wave
quarkonium decays into light hadrons, photons, and lep
pairs atO(c„as(m)…mv33(LQCD

2 /m2,E/m)) @c(as(m)… be-
ing a function of as(m) computable within perturbation
theory#. This reduces the number of unknown parameters
the total decay widths of charmonium and bottomoniu
states below threshold by roughly a factor of 2, which allo
us, in turn, to formulate several new model-independent p
dictions. Particularly important is the fact that our formalis
allows the physics due to the solution of the Schro¨dinger
equation, which appears entirely in the wave function, to
disentangled not only from the short-distance physics
scales ofO(m), but also from the gluonic excitations with a
energy ofO(LQCD). As a consequence, the wave-functio
dependence drops out in the ratio of hadronic and elec
magnetic decay widths. For this class of observables the
duction in the number of nonperturbative parameters in
ing from NRQCD to pNRQCD is even more dramatic, sin
only the ~six! nonperturbative universal parameters appe
ing at this order in pNRQCD are needed.

Finally, we would like to mention the dynamical situatio
when the binding energy is positive and of the same orde
magnitude as the momentum transferk, namely, whenE
*LQCD;k. In this case degrees of freedom with ener
;LQCD cannot be integrated out. States close to and bey
the heavy–light meson pair threshold are expected to b
this situation. The results of this paper do not apply, in pr
ciple, to this case.

The paper is arranged as follows. Section II reviews so
aspects of NRQCD that are relevant to the rest of the pa
Section III provides a detailed description of the computat
of the ‘‘spectrum’’ of NRQCD, in particular the ground stat
in the 1/m expansion in the general case. It is meant for
reader interested in learning the techniques involved in
type of computation. The description of pNRQCD, its pow
counting, and the relation between the computation of S
III and the Hamiltonian in pNRQCD are given in Sec. IV
Section V provides a detailed description of the match
between pNRQCD and NRQCD in the particular caseE
!LQCD!k. This section may help the reader who is n
willing to go through the general case in Sec. III, but s

1Note the change of name with respect to Sec. 5 of@6#.
8-2
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INCLUSIVE DECAYS OF HEAVY QUARKONIUM TO . . . PHYSICAL REVIEW D67, 034018 ~2003!
wants to get a flavor of the kind of calculation we are p
forming. Section VI summarizes our results. The reader w
is only interested in our final results and wants to skip a
computational detail may jump directly to this section. Se
tion VII displays some model-independent predictions t
follow from our results. We finally draw our conclusions
Sec. VIII. A number of appendixes complement the m
body of the paper. Appendix A recalls the four-fermio
NRQCD operators atO(1/m4). Appendix B gives the gen
eral formula relating an arbitrary NRQCD matrix eleme
with the computation in pNRQCD. Appendix C gives th
leading-log renormalization group running of the imagina
parts of the four-fermion NRQCD operator matching coe
cients. Appendix D shows how to deal with ill-defined pro
ucts of distributions within dimensional regularization. A
pendix E shows how unitary transformations can rel
different forms of the pNRQCD Hamiltonian.

II. NRQCD

NRQCD is obtained from QCD by integrating out th
heavy quark mass scalem @1#. The NRQCD Lagrangian can
be written as follows:

LNRQCD5Lg1Llight1L22f1L42f , ~3!

where Lg involves only gluon fields,Llight involves light-
quark and gluon fields, andL2n2f are the terms in the La
grangian with 2n heavy quark fields.

The NRQCD Lagrangian can be organized as a se
expansion inas(m) and in the inverse of the heavy-qua
03401
-
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mass 1/m. Powers ofas(m) are encoded into the Wilson
coefficients of NRQCD.

In this paper, we aim at a description of heavy quark
nium inclusive decays into light hadrons and electromagn
decays, whose appearance is due to the imaginary term
the NRQCD Lagrangian. It is convenient, then, to split t
Lagrangian into the Hermitian~real! and the anti-Hermitian
~imaginary! parts:

LNRQCD5ReLNRQCD1 i Im LNRQCD, ~4!

where

ReLNRQCD5Lg1Llight1L22f1ReL42f ~5!

and

Im LNRQCD5Im L42f . ~6!

The operators responsible for heavy quarkonium decays
the NRQCD four-fermion operators whose matching coe
cients carry an imaginary part. For our purposes, it is su
cient to consider either dimension 6 or dimension 8 fo
fermion operators:

Im LNRQCD5Im L42f5Im L42f
d561Im L42f

e.m.d561Im L42f
d58

1Im L42f
e.m.d58. ~7!

With the superscript e.m., we indicate operators respons
for the electromagnetic decays. More explicitly, we have
Im L42f
d565

Im f 1~1S0!

m2
O1~1S0!1

Im f 1~3S1!

m2
O1~3S1!1

Im f 8~1S0!

m2
O8~1S0!1

Im f 8~3S1!

m2
O8~3S1!, ~8!

Im L42f
e.m.d565

Im f e.m.~
1S0!

m2
Oe.m.~

1S0!1
Im f e.m.~

3S1!

m2
Oe.m.~

3S1!, ~9!

Im L42f
d585

Im f 1~1P1!

m4
O1~1P1!1

Im f 1~3P0!

m4
O1~3P0!1

Im f 1~3P1!

m4
O1~3P1!1

Im f 1~3P2!

m4
O1~3P2!1

Im g1~1S0!

m4
P1~1S0!

1
Im g1~3S1!

m4
P1~3S1!1

Im g1~3S1 , 3D1!

m4
P1~3S1 , 3D1!1@O1→O8 ,P1→P8 , f 1→ f 8 ,g1→g8#, ~10!

Im L42f
e.m.d585

Im f e.m.~
1P1!

m4
Oe.m.~

1P1!1
Im f e.m.~

3P0!

m4
Oe.m.~

3P0!1
Im f e.m.~

3P1!

m4
Oe.m.~

3P1!1
Im f e.m.~

3P2!

m4
Oe.m.~

3P2!

1
Im ge.m.~

1S0!

m4
Pe.m.~

1S0!1
Im ge.m.~

3S1!

m4
Pe.m.~

3S1!1
Im ge.m.~

3S1 , 3D1!

m4
Pe.m.~

3S1 , 3D1!. ~11!
8-3
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The definitions of the hadronic operators can be found in@1#.
For ease of reference, we recall them in Appendix A, wh
we also give the definitions of the electromagnetic operat

The distinction between hadronic and electromagnetic
erators is somewhat artificial. In general the four-fermi
operators listed in Eqs.~A1!–~A18! are all the dimension 6
and 8 operators needed to describe decays into light had
and/or hard electromagnetic particles. The informat
needed in order to describe decays into hard electromag
particles is encoded into the electromagnetic contribution
the matching coefficients. The electromagnetic operators
fined in @1# arise from singling out the operators accomp
nying the matching coefficients whose imaginary parts c
respond to pure electromagnetic decays and inserting
them the QCD vacuum (uvac&^vacu). This insertion guaran-
tees that, when calculating with these operators in NRQC
no contamination from soft strong interactions will occu
Hence, the electromagnetic operators encode all the rele
information needed in order to calculate the quarkonium
tal decay width to electromagnetic particles only. Howev
one might also be interested in the decays to hard elec
magnetic particles and soft light hadrons. In this case,
complement to the above projector, namely, 12uvac&^vacu,
should be considered. In this paper, however, we will rest
our attention to the processes, and therefore to the opera
originally considered in@1#.

The Hermitian piece of the NRQCD Lagrangian can a
be written in a 1/m expansion:

ReL5L (0)1
1

m
L (1)1

1

m2ReL (2)1•••. ~12!

At order 1/m the different pieces of Eq.~5! read

L22f5c†H iD 01
D2

2m
1cFg

s•B

2m J c

1x†H iD 02
D2

2m
2cFg

s•B

2m J x,

Lg52
1

4
Gmn

a Gamn, ~13!

Llight5(
j 51

nf

q̄ j iD” qj ,

ReL42f50,

wherec is the Pauli spinor field that annihilates the fermi
and x is the Pauli spinor field that creates the antifermio
iD 05 i ]02gA0, iD5 i“1gA, Bi52e i jkGjk/2; for later
use, we also defineEi5G0i and @D•,E#5D•E2E•D. The
chromomagnetic matching coefficientcF is known at next-
to-leading order and its value can be found in@17#. Concern-
ing the explicit expression of theO(1/m2) Lagrangian, see
Ref. @15# for the operators without light quarks and Ref.@18#
for the operators including light fermions.
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III. THE NRQCD ‘‘SPECTRUM’’ IN THE 1 Õm EXPANSION

We assume we are in the situationLQCD&mv in which
the matching to pNRQCD cannot be performed within a p
turbative expansion inas. Nevertheless, it can be done b
assuming an expansion in 1/m, within the Hamiltonian for-
malism of @14,15#, to which we refer for further details. We
may divide the procedure into three steps.

~1! The spectrum of the NRQCD Hamiltonian, made
quarkonium and gluonic excitations between heavy qua
is evaluated order by order in 1/m starting from the static
configuration. This will be done in Secs. III A–III E.

~2! The quantum-mechanical matrix elements are
pressed in terms of gluonic field correlators. This will b
done in Sec. III F.

~3! The excitations of ordermv2 are identified as the de
grees of freedom of pNRQCD. The matching to pNRQCD
performed by integrating out the excitations of orderLQCD
andmv. This will be done and discussed in Sec. IV.

A. The NRQCD Hamiltonian

The NRQCD Hamiltonian without light fermions ha
been worked out up toO(1/m) in Ref. @14# and up to
O(1/m2) in Ref. @15#, to which we refer for the explicit
expressions. In the following we will consider the inclusio
of light fermions.

The inclusion of light fermions produces new terms in t
Hamiltonian of pure gluodynamics. In the static limit, w
have

H (0)5H (0)~nf50!2(
j 51

nf E d3xq̄ j iD•gqj . ~14!

The next corrections in the Hamiltonian, due to light ferm
ons, appear atO(1/m2) and have been considered in Re
@18#. We will not need their explicit expressions in this pap
We will only need the expressions of the Hermitian part
the NRQCD Hamiltonian up to order 1/m:

ReH5
H (1)

m
52

1

2mE d3xc†~D21gcFs•B!c

1
1

2mE d3xx†~D21gcFs•B!x, ~15!

and of the imaginary part of the NRQCD Hamiltonian up
order 1/m4:

Im H5
Im H (2)

m2
1

Im H (4)

m4
, ~16!

where ImH (2)5Im H42 f
(2) , Im H (4)5Im H42 f

(4) , and

H42 f
(2)

m2
52E d3x~L42 f

d561L42 f
e.m.d56!, ~17!
8-4
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H42 f
(4)

m4
52E d3x~L42 f

d581L42 f
e.m.d58!. ~18!

The Gauss law, constraining the physical statesuphys&, reads

D•Pauphys&5g~c†Tac1x†Tax1q̄g0Taq!uphys&,
~19!

wherePa is the canonical momentum conjugated toAa. In
Ref. @19#, general details about Hamiltonian quantization c
be found and in Refs.@14,15# details specific to our case.

B. The NRQCD spectrum atO„1Õm3
…

Let us callH5H (0)1HI the NRQCD Hamiltonian,H (0)

being its static part and

HI5
H (1)

m
1

H (2)

m2
1•••. ~20!

We call un;x1 ,x2&
(0) the eigenstates of H0 , En

(0) the corre-
sponding eigenvalues,un;x1 ,x2& the eigenstates ofH, andEn

the corresponding eigenvalues within a strict expansion
1/m. This means that they satisfy the analogue of the Sch¨-
dinger equation:
03401
n

in
o

Hun;x1 ,x2&5E d3x18d
3x28un;x18 ,x28&En~x18 ,x28 ;p18 ,p28!

3d (3)~x182x1!d (3)~x282x2!. ~21!

With n we indicate a generic set of conserved quantum nu
bers. Note that the heavy quark positionsx1 andx2 are con-
served quantities only with respect to the zeroth order Ham
tonianH0. The statesun;x1 ,x2& are normalized according to

^m;x1 ,x2un;y1 ,y2&5dnmd (3)~x12y1!d (3)~x22y2!,
~22!

and we define

Nn
1/2~y1 ,y2 ;p1 ,p2!d (3)~y12x1!d (3)~y22x2!

5 (0)^n;y1 ,y2un;x1 ,x2&. ~23!

The above three equations~21!–~23! may be used in order to
determine the three unknown quantitiesun;x1 ,x2&, En , and
Nn(y1 ,y2 ;p1 ,p2) recursively using quantum-mechanic
perturbation theory around the static solution. For this p
pose a convenient way to rewrite Eqs.~21!–~23! is
@En(x;p)[En(x1 ,x2 ;p1 ,p2) andEn

(0)(x)[En(x1 ,x2)]: 2
Nn~y1 ,y2 ;p1 ,p2!d (3)~y12x1!d (3)~y22x2!

5d (3)~y12x1!d (3)~y22x2!2 (
m5” n

E d3z1E d3z2

^n;y1 ,y2um;z1 ,z2&
(0)

Em
(0)~z!2En

(0)~x!

3 H E d3x18E d3x28
(0)^m;z1 ,z2un;x18,x28&@En~x8;p8!2En

(0)~x8!#d (3)~x182x1!d (3)~x282x2!

2 (0)^m;z1 ,z2uHI un;x1 ,x2&J , ~24!

un;x1 ,x2&5E d3z1E d3z2un;z1 ,z2&
(0)Nn

1/2~z1 ,z2 ;p1 ,p2!d (3)~z12x1!d (3)~z22x2!

1 (
m5” n

E d3z1E d3z2

um;z1 ,z2&
(0)

Em
(0)~z!2En

(0)~x!
H E d3x18E d3x28

(0)^m;z1 ,z2un;x18 ,x28&@En~x8;p8!

2En
(0)~x8!#d (3)~x182x1!d (3)~x282x2!2 (0)^m;z1 ,z2uHI un;x1 ,x2&J , ~25!

E d3x18E d3x28Nn
1/2~y1 ,y2 ;p1 ,p2!d (3)~y12x18!d (3)~y22x28!En~x8;p8!d (3)~x182x1!d (3)~x282x2!

5En
(0)~y!Nn

1/2~y1 ,y2 ;p1 ,p2!d (3)~y12x1!d (3)~y22x2!1 (0)^n;y1 ,y2uHI un;x1 ,x2&. ~26!

2A slightly different set of equations can be found in Ref.@15#.
8-5



’

BRAMBILLA, EIRAS, PINEDA, SOTO, AND VAIRO PHYSICAL REVIEW D67, 034018 ~2003!
By means of the above equations it is formally possible to obtain, within the framework of a 1/m expansion, the ‘‘energies’
and the ‘‘states’’ of any excitation of the NRQCD Hamiltonian.

Up to O(HI
3), the energy of a generic state labeledn is given by

En~y;p!d (3)~y12x1!d (3)~y22x2!

5En
(0)~y!d (3)~y12x1!d (3)~y22x2!1 (0)^n;y1 ,y2uHI un;x1 ,x2&

(0)

2
1

2 (
k5” n

E d3z1d3z2
(0)^n;y1 ,y2uHI uk;z1 ,z2&

(0) (0)^k;z1 ,z2uHI un;x1 ,x2&
(0)S 1

Ek
(0)~z!2En

(0)~y!
1

1

Ek
(0)~z!2En

(0)~x!
D

2
1

2 (
k5” n

E d3z1d3z2E d3j1d3j2
(0)^n;y1 ,y2uHI uk;z1 ,z2&

(0) (0)^k;z1 ,z2uHI un;j1 ,j2&
(0) (0)^n;j1 ,j2uHI un;x1 ,x2&

(0)

3
1

Ek
(0)~z!2En

(0)~x!

1

Ek
(0)~z!2En

(0)~j!
2

1

2 (
k5” n

E d3z1d3z2E d3j1d3j2
(0)^n;y1 ,y2uHI un;j1 ,j2&

(0)

3 (0)^n;j1 ,j2uHI uk;z1 ,z2&
(0) (0)^k;z1 ,z2uHI un;x1 ,x2&

(0)
1

Ek
(0)~z!2En

(0)~y!

1

Ek
(0)~z!2En

(0)~j!

1
1

2 (
k,k85” n

E d3z1d3z2E d3j1d3j2
(0)^n;y1 ,y2uHI uk8;j1 ,j2&

(0) (0)^k8;j1 ,j2uHI uk;z1 ,z2&
(0) (0)^k;z1 ,z2uHI un;x1 ,x2&

(0)

3S 1

Ek
(0)~z!2En

(0)~y!

1

Ek8
(0)

~j!2En
(0)~y!

1
1

Ek
(0)~z!2En

(0)~x!

1

Ek8
(0)

~j!2En
(0)~x!

D 1O~HI
4!. ~27!
of

m

r

The expansion up toO(HI) was considered in@14# in order
to obtain the 1/m potential. TheO(HI

2) term was obtained in
@15#. TheO(HI

3) expression is new. A detailed derivation
Eq. ~27! will be given in Sec. III D.

C. The NRQCD states atO„1Õm2
…

The states can also be formally expanded in 1/m:

un;x1 ,x2&5un;x1 ,x2&
(0)1

1

m
un;x1 ,x2&

(1)1
1

m2 un;x1 ,x2&
(2)

1•••. ~28!

It is convenient to write the above states in terms of so
new statesuñ;x1 ,x2&, defined recursively as~see also Ref.
@15#!

uñ;x1 ,x2&5un;x1 ,x2&
(0)1

1

En
(0)~x!2H (0)

3 (
m5” n

E d3x18d
3x28um;x18 ,x28&

(0) (0)^m;x18 ,x28u

3 HHI uñ;x1 ,x2&2E d3x18d
3x28uñ;x18 ,x28&

3 (0)^n;x18 ,x28uHI uñ;x1 ,x2&J

03401
e

[uñ;x1 ,x2&
(0)1

1

m
uñ;x1 ,x2&

(1)1
1

m2 uñ;x1 ,x2&
(2)

1•••. ~29!

As a consequence of Eq.~29!, it holds that

(0)^n;x1 ,x2uñ;y1 ,y2&5d (3)~x12y1!d (3)~x22y2! ~30!

or equivalently~this equation will become crucial in late
sections to simplify some calculations!

(0)^n;x1 ,x2uñ;y1 ,y2&
( i )50 ; i 5” 0. ~31!

At O(1/m), we obtain

un;x1 ,x2&
(1)5uñ;x1 ,x2&

(1)52 (
k5” n

E d3z1d3z2uk;z1 ,z2&
(0)

3

(0)^k;z1 ,z2uH (1)un;x1 ,x2&
(0)

Ek
(0)~z!2En

(0)~x!
. ~32!

At O(1/m2), we obtain

un;x1 ,x2&
(2)5uñ;x1 ,x2&

(2)1un;x1 ,x2&norm
(2) , ~33!

where
8-6
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uñ;x1 ,x2&
(2)52 (

k5” n
E d3z1d3z2uk;z1 ,z2&

(0)
(0)^k;z1 ,z2uH (2)un;x1 ,x2&

(0)

Ek
(0)~z!2En

(0)~x!
1 (

k5” n
E d3z1d3z2uk;z1 ,z2&

(0)

3S 2E d3j1d3j2

(0)^k;z1 ,z2uH (1)un;j1 ,j2&
(0) (0)^n;j1 ,j2uH (1)un;x1 ,x2&

(0)

@Ek
(0)~z!2En

(0)~x!#@Ek
(0)~z!2En

(0)~j!#

1(
j 5” n

E d3j1d3j2

(0)^k;z1 ,z2uH (1)u j; j1 ,j2&
(0) (0)^ j; j1 ,j2uH (1)un;x1 ,x2&

(0)

@Ek
(0)~z!2En

(0)~x!#@Ej
(0)~j!2En

(0)~x!#
D , ~34!

and the second term, due to the normalization of the state, reads~note thatN0511N0
(2)/m21••• is Hermitian!

un;x1 ,x2&norm
(2) 52

1

2E d3x18d
3x28u0̃;x18 ,x28&

(0)N0
(2)~x18 ,x28 ;p18 ,p28!d (3)~x182x1!d (3)~x282x2!

52E d3z1d3z2un;z1 ,z2&
(0)(

k5” n
E d3j1d3j2

(0)^n;z1 ,z2uH (1)uk;j1 ,j2&
(0) (0)^k;j1 ,j2uH (1)un;x1 ,x2&

(0)

@Ek
(0)~j!2En

(0)~x!#@Ek
(0)~j!2En

(0)~z!#
.

~35!

By using Eq.~15! and the identities obtained in Refs.@14,15#, explicit expressions for the above Eqs.~32! and ~33! can be
worked out. In particular, at order 1/m we obtain~the spin-independent part was first obtained in@14#!:

un;x1 ,x2&
(1)52 (

k5” n
S 2

1

2

(0)^ku@D1•,gE1#un& (0)

~En
(0)2Ek

(0)!2
1(

j 5” n

(0)^kugE1u j & (0)
•

(0)^ j ugE1un& (0)

~En
(0)2Ek

(0)!2~En
(0)2Ej

(0)!
12~“1En

(0)!•
(0)^kugE1un& (0)

~En
(0)2Ek

(0)!3

1“1•

(0)^kugE1un& (0)

~En
(0)2Ek

(0)!2
1

cF

2
s1•

(0)^kugB1un& (0)

En
(0)2Ek

(0) D uk;x1 ,x2&
(0)1@gE1

→2gE2
T ,gB1→2gB2

T ,s1→s2 ,“1→“2 ,D1→Dc 2#, ~36!
ns
r-
o

th
n

om
th

to

p-
ra-
e

it-

les
where un& (0) is a shorthand notation forun;x1 ,x2&
(0), the

state that encodes the gluonic content of the stateun;x1,x2&
(0)

and is normalized as(0)^num& (0)5dnm @for a precise defini-
tion, see Eq.~53! and the following discussion#. We will use
expression~36! in the subsequent sections.

D. Im E0 with relative accuracyO„1Õm2
…: Structure

of the calculation

In this paper, we are interested in computing ImEn ~actu-
ally Im E0) with relative accuracyO(1/m2). We will now
explain in detail how the different terms of Eq.~27! appear
within the quantum-mechanical calculation.

Equations~24!–~26!, as well as the analogous equatio
in Ref. @15#, implicitly assume that the Hamiltonian is He
mitian. This is not true at arbitrary orders and the iteration
imaginary-dependent terms may lead to problems. Never
less, at the relativeO(1/m2) accuracy we are aiming at i
this paper for the imaginary terms and for then50 state,
such effects are zero. Therefore, effectively, we have to c
pute only the expectation value of the imaginary part of
NRQCD Hamiltonian in terms of theO(1/m2) eigenstates of
03401
f
e-

-
e

the Hermitian part of the NRQCD Hamiltonian.3 The reason
is that the only imaginary contribution to the states up
O(1/m2) comes from the first line of Eq.~34! and this term
is zero forn50 because of the subsequent Eq.~69!.

The imaginary terms in the NRQCD Lagrangian only a
pear in the matching coefficients of the four-fermion ope
tors, i.e., in L42 f . Therefore, the imaginary part of th
NRQCD Hamiltonian has the structure of Eq.~16!. Profiting
from this structure of the imaginary terms and since the
eration of the leading imaginary terms gives zero, ImE0 can
be computed from

Im E0d (3)~x12x18!d (3)~x22x28!5^0;x1 ,x2uIm Hu0;x18 ,x28&.
~37!

Expanding in 1/m the states and ImH, we can identify the
different terms of ImE0 in the 1/m expansion:

Im E05
1

m2 Im E0
(2)1

1

m3 Im E0
(3)1

1

m4 Im E0
(4)1•••.

~38!

3However, a systematic method to work with unstable partic
should be worked out if a higher precision is warranted.
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They read

Im E0
(2)d (3)~x12x18!d (3)~x22x28!

5 (0)^0;x1 ,x2uIm H (2)u0;x18 ,x28&
(0), ~39!

Im E0
(3)d (3)~x12x18!d (3)~x22x28!

5 (1)^0̃;x1 ,x2uIm H (2)u0;x18 ,x28&
(0)

1 (0)^0;x1 ,x2uIm H (2)u0̃;x18 ,x28&
(1), ~40!

Im E0
(4)d (3)~x12x18!d (3)~x22x28!

5 (0)^0;x1 ,x2uIm H (4)u0;x18 ,x28&
(0)

1 (1)^0;x1 ,x2uIm H (2)u0;x18 ,x28&
(1)

1 (2)^0̃;x1 ,x2uIm H (2)u0;x18 ,x28&
(0)

1 (0)^0;x1 ,x2uIm H (2)u0̃;x18 ,x28&
(2)

1 (0)^0;x1 ,x2uIm H (2)u0;x18 ,x28&norm
(2)

1norm
(2) ^0;x1 ,x2uIm H (2)u0;x18 ,x28&

(0). ~41!

After an explicit calculation, we have

Im E0
(3)50, ~42!

since

(1)^0̃;x1 ,x2uIm H (2)u0;x18 ,x28&
(0)

5 (0)^0;x1 ,x2uIm H (2)u0̃;x18 ,x28&
(1)

50. ~43!

Moreover, we have

(2)^0̃;x1 ,x2uIm H (2)u0;x18 ,x28&
(0)

5 (0)^0;x1 ,x2uIm H (2)u0̃;x18 ,x28&
(2)

50. ~44!

These results follow from Eq.~31!, supplemented by the
following argument. The color structure of ImH (2) is such
that, at the gluonic level, the following matrix elements a
produced within the total expression:

(0)^nu11^ 12u0& (0)5 (0)^nu0& (0)5dn0 ~45!

~by definition! and
03401
(0)^nuT1
a

^ T2
†au0& (0). ~46!

In order to deal with this second expression, we note that
lowest excitation, in the limitx1→x2, has no gluonic conten

and behaves likeu0;x1 ,x2&
(0)51c /ANcuvac&, so that

(0)^nuT1
a

^ T2
†au0& (0)d (3)~x12x2!5Cfdn0d (3)~x12x2!,

~47!

whereCf5(Nc
221)/(2Nc). The above expressions may a

pear problematic since they involve the behavior of the s
in the limit x1→x2 and some regularization could be r
quired in this case. However, we actually only need a wea
condition to ensure that Eq.~44! is zero. What we have is an
expression like

(
n5” 0

(
k5” 0

(0)^0uO1un& (0)~••• !(0)^kuT1
a

^ T2
†au0& (0)

3d (3)~x12x2!, ~48!

whereO1 is some unspecified operator. Following Ref.@14#,
this expression is the spectral decomposition of the Wils
loop ~for the definition of a Wilson loop with a numbern of
operator insertions, see Ref.@15#!:

E dt1•••dtn^^O1~ t1!~••• !T1
a

^ T2
†a~ tn!&&cd

(3)~x12x2!,

~49!

where ^^O&& stays for the insertion of the operatorO on a
static Wilson loop of spatial extensionx12x2. In the pres-
ence of more operators, the symbol^^•••&&c indicates the
connected part~see in particular the erratum of Ref.@15#!.
One can see that the operator~49! is zero in the limitx1

→x2. In order to obtain this result, it is very important th
the delta acts directly on the states.4 In this situation, and in
the limit x1→x2, one can see that the disconnected piece
the Wilson loop cancels with the connected piece, prov
Eq. ~44!.

For the other terms, we have

4We may have situations where the Wilson loop operator has
structure

E dt1•••dtn@“1^^O1~t1!~•••!T1
a

^T2
†a~tn!&&c#d

(3)~x12x2!. ~50!

In this case the argument does not apply since the delta does no
directly on the Wilson loop.
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(1)^0;x1 ,x2uIm H (2)u0;x18 ,x28&
(1)5

1

2 (
k,k85” 0

E d3z1d3z2E d3j1d3j2
(0)^0;y1 ,y2uH (1)uk8;j1 ,j2&

(0)

3 (0)^k8;j1 ,j2uIm H42 f
(2) uk;z1 ,z2&

(0) (0)^k;z1 ,z2uH (1)u0;x1 ,x2&
(0)

3S 1

Ek
(0)~z!2E0

(0)~y!

1

Ek8
(0)

~j!2E0
(0)~y!

1
1

Ek
(0)~z!2E0

(0)~x!

1

Ek8
(0)

~j!2E0
(0)~x!

D ,

~51!

(0)^0;x1 ,x2uIm H (2)u0;x18 ,x28&norm
(2) 1norm

(2) ^0;x1 ,x2uIm H (2)u0;x18 ,x28&
(0)

52
1

2 (
k5” 0

E d3z1d3z2E d3j1d3j2
(0)^0;y1 ,y2uH (1)uk;z1 ,z2&

(0) (0)^k;z1 ,z2uH (1)u0;j1 ,j2&
(0)

3 (0)^0;j1 ,j2uIm H42 f
(2) u0;x1 ,x2&

(0)
1

Ek
(0)~z!2E0

(0)~x!

1

Ek
(0)~z!2E0

(0)~j!

2
1

2 (
k5” 0

E d3z1d3z2E d3j1d3j2
(0)^0;y1 ,y2uIm H42 f

(2) u0;j1 ,j2&
(0) (0)^0;j1 ,j2uH (1)uk;z1 ,z2&

(0)

3 (0)^k;z1 ,z2uH (1)u0;x1 ,x2&
(0)

1

Ek
(0)~z!2E0

(0)~y!

1

Ek
(0)~z!2E0

(0)~j!
. ~52!
y
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Indeed, the last two equations hold as well for an arbitrarn
and not only for the staten50, for which we have explicitly
displayed them. It can be easily checked that the imagin
part of Eq.~27! for n50 coincides with the above expressio
~38! supplemented by Eqs.~39!–~41!, ~43!, ~44!, ~51!, and
~52!.

E. Im E0 with relative accuracyO„1Õm2
…: Explicit expressions

in terms of gluonic fields

The expressions obtained in the previous section can
rearranged in terms of the pure gluonic content~see Refs.
@14,15#!. In order to achieve this we have to make the qu
field content of the states explicit and use the Wick theore
There is some freedom in choosing the specific realizatio
the quark fields under spin transformations. In@14#, the fol-
lowing state was chosen:

un;x1 ,x2&
(0)[c†~x1!x~x2!un;x1 ,x2&

(0) ; x1 ,x2 . ~53!

In the basis of four-fermion operators that we are using
this paper~see Appendix A! and in the above basis, th
quantum-mechanical operators that naturally appear ar1s
^ 1s and s i

^ s j , where1s(s i) is the identity~sigma ma-
trix! in spin space acting either on the final or the initial sp
quark-antiquark state. Analogous definitions can be made
the operators acting on the color subspace.

Another possibility is the state

un;x1 ,x2&
(0)[c†~x1!xc

†~x2!un;x1 ,x2&
(0) ; x1 ,x2 ,

~54!
03401
ry

be

k
.

of

n

or

which has been used in Ref.@15#. The quantum-mechanica
operators, which naturally appear in this way, are11,2, s1,2

i ,
and they represent the operators acting on either the par
1 or 2 ~in this case we have always a particle interpretatio!.
Analogous definitions can be made for the operators ac
on the color subspace. This representation appears to
more convenient for the calculations of the quantu
mechanical matching. In principle, one could also write t
local four-fermion operators in a basis convenient for the
states by using Fierz transformations@20#.

In both cases, we assume the state to be properly nor
ized in the spin sector. Depending on the calculation, o
definition turns out to be more useful than the other. In a
case, at the end, we are interested in writing the quant
mechanical Hamiltonian relevant to the Schro¨dinger equa-
tion. A way of avoiding ambiguities is to write everything i
terms of a definite set of spin operators. We will adopt t
operatorsSi and 1 acting on a generic 1/2̂1/2 spin space
and defined as

Si5
s 1

i

2
^ 12111^

s 2
i

2
, 1511^ 12 . ~55!

It is possible to transform them into the operators1s^ 1s and
s i

^ s j by using the identities

xcS
i S jxc

†5x†s i
^ s jx,xc~2 12S2!xc

†5x†1s^ 1sx.
~56!

Let us now compute the different matrix elements that
pear in Eq.~41!. The contribution due to the dimension
four-fermion operators reads
8-9
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(0)^0;x1 ,x2uIm H42 f
(4) u0;y1 ,y2&

(0)

5S CA Im f 1~2S11PJ!T SJ
i j
“

id (3)~r !“ j

1
CA

2
Im g1~2S11SJ!VSJ

i j H“ i
“

j1
d i j

3
E1 ,d (3)~r !J

1
TF

3
Im f 8~2S11PJ!T SJ

ii E 1d (3)~r ! D d (3)~x12y1!

3d (3)~x22y2!, ~57!

whereCA5Nc , “[“ r , r[x12x2, and (TS will be used in
Sec. V!

T 01
i j 5d i j ~212S2!, ~58!

T 10
i j 5

1

3
SiS j , ~59!

T 11
i j 5

1

2
eki,ek j,8S

,S,8, ~60!

T 12
i j 5S d ikS,1d i ,Sk

2
2

Sidk,

3 D
3S d jkS,1d j ,Sk

2
2

S jdk,

3 D , ~61!

V00
i j 5d i j ~212S2!, ~62!
03401
V11
i j 5d i j S

2, ~63!

V11
i j ~3S1 ,3D1!5SiSj2

d i j

3
S2, ~64!

TS5
1

3
VSS

ii . ~65!

Equations~58!–~61! and ~65! provide the explicit expres-
sions of the operatorsTS andT SJ

i j first used in Ref.@16#. The
nonperturbative constantE1 ~as well as all the other constan
E3 , B1 , E 3

(2) , E 3
(2,c) , andE 3

(2,norm) appearing in this section!
will be defined in Sec. III F. If we consider the electroma
netic contribution due toH42 f

(4) , we obtain~in this case there
are no octet operators!

(0)^0;x1 ,x2uIm H42 f
(4,e.m.)u0;y1 ,y2&

(0)

5S CA Im f e.m.~
2S11PJ!T SJ

i j
“

id (3)~r !“ j

1
CA

2
Im ge.m.~

2S11SJ!VSJ
i j H“ i

“

j

1
d i j

3
E1 ,d (3)~r !J D d (3)~x12y1!d (3)~x22y2!. ~66!

In order to calculate the contribution due to the 1/m correc-
tion to the state, we need to know~a 1 is understood where
no spin-operator is displayed!:
(0)^n;x1 ,x2uH (1)um;y1 ,y2&
(0)

5S 1

2

(0)^nu@D1•,gE1#um& (0)

En
(0)2Em

(0)
2(

j 5” n

(0)^nugE1u j & (0)
•

(0)^ j ugE1um& (0)

~En
(0)2Em

(0)!~En
(0)2Ej

(0)!
2~“1En

(0)!•
(0)^nugE1um& (0)

~En
(0)2Em

(0)!2

2“1•

(0)^nugE1um& (0)

En
(0)2Em

(0)
2

cF

2
s1•

(0)^nugB1um& (0)D d (3)~x12y1!d (3)~x22y2!

1@gE1→2gE2
T ,gB1→2gB2

T ,s1→s2 ,“1→“2 ,D1→Dc2# ; n5” m, ~67!

(0)^n;x1 ,x2uIm H42 f
(2) um;y1 ,y2&

(0)52H F2S Im f 1~1S0!2
TF

Nc
Im f 8~1S0! D1S Im f 1~3S1!2Im f 1~1S0!1

TF

Nc
@ Im f 8~1S0!

2Im f 8~3S1!# DS2Gd (3)~r !^nu1c^ 1cum&1$2 Im f 8~1S0!1@ Im f 8~3S1!

2Im f 8~1S0!#S2%d (3)~r !TFdnmJ d (3)~x12y1!d (3)~x22y2!, ~68!

whereF j[F(xj ), F being a generic gluonic operator. In particular, from the last equation it follows that

(0)^n;x1 ,x2uIm H42 f
(2) u0;y1 ,y2&

(0)50 ; n5” 0. ~69!
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It is this equation that guarantees that, for then50 quarkonium state, no imaginary contribution is carried by the state~see the
discussion at the beginning of Sec. III D!. Finally, from the above equations it follows that the contributions due to them
correction to the state read

(1)^0̃;x1 ,x2uIm H (2)u0̃;y1 ,y2&
(1)5S TF

9
E3“d (3)~r !“$4 Im f 8~1S0!22S2@ Im f 8~1S0!2Im f 8~3S1!#%12TFcF

2B 1d (3)~r !

3F Im f 8~3S1!1
1

6
S2@ Im f 8~1S0!23 Im f 8~3S1!#G1

TF

3
E 3

(2)d (3)~r !$4 Im f 8~1S0!

22S2@ Im f 8~1S0!2Im f 8~3S1!#%2
CA

3
~E 3

(2)2E 3
(2,c)!d (3)~r !$4 Im f 1~1S0!22S2@ Im f 1~1S0!

2Im f 1~3S1!#% D d (3)~x12y1!d (3)~x22y2!. ~70!

For the electromagnetic contribution we have the intermediate vacuum, which does not allow an intermediate em
gluons. This means that

(1)^0;x1 ,x2uIm He.m.
(2) u0;y1 ,y2&

(1)50. ~71!

The contributions due to the normalization of the state read

(0)^0;x1 ,x2uIm H (2)u0;y1 ,y2&norm
(2) 1norm

(2) ^0;x1 ,x2uIm H (2)u0;y1 ,y2&
(0)

5S 2
2

9
CAE3$“

2,d (3)~r !%F Im f 1~1S0!1
S2

2
@ Im f 1~3S1!2Im f 1~1S0!#G

22CAcF
2B 1d (3)~r !F Im f 1~1S0!1

S2

6
@ Im f 1~3S1!23 Im f 1~1S0!#G2

CA

3
~E 3

(2,c)

1E 3
(2,norm)!d (3)~r !$4 Im f 1~1S0!22S2@ Im f 1~1S0!2Im f 1~3S1!#% D d (3)~x12y1!d (3)~x22y2!. ~72!
ro
in
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w
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on.
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Exactly the same contribution is obtained from the elect
magnetic terms if we change the subscript 1 in the match
coefficients to e.m.

F. Gluonic correlators

The nonperturbative constantsEn , Bn , E 3
(2) , E 3

(2,c) , and
E 3

(2,norm), which appeared in the previous section, are p
gluonic quantities, since the fermionic fields have been in
grated out. Within the quantum-mechanical matching, th
are first obtained in terms of gluonic states. For instance,
obtain the expressions

En

d i j

3
5~2 i !n11n! (

k5” 0

^0ugEi uk&^kugEj u0&

~Ek
(0)2E0

(0)!n11
, ~73!

Bn

d i j

3
5~2 i !n11n! (

k5” 0

^0ugBi uk&^kugBj u0&

~Ek
(0)2E0

(0)!n11
,

~74!
03401
-
g

e
-
y
e

E 3
(2,c)52

3!

4

3 (
n,r ,s5” 0

H ^0ugE1ur &•^r ugE1un&^nugE1us&•^sugE1u0&

~E0
(0)2Er

(0)!~E0
(0)2Em

(0)!4~E0
(0)2Es

(0)!

1
^0ugE2

Tur &•^r ugE2
Tun&^nugE2

Tus&•^sugE2
Tu0&

~E0
(0)2Er

(0)!~E0
(0)2Em

(0)!4~E0
(0)2Es

(0)!

1
^0ugE1ur &•^r ugE1un&^nugE2

Tus&•^sugE2
Tu0&

~E0
(0)2Er

(0)!~E0
(0)2Em

(0)!4~E0
(0)2Es

(0)!

1
^0ugE2

Tur &•^r ugE2
Tun&^nugE1us&•^sugE1u0&

~E0
(0)2Er

(0)!~E0
(0)2Em

(0)!4~E0
(0)2Es

(0)!
J ,

••• ••• •••. ~75!

For the first two equations, there is no need to spec
whether the gluonic fields are inserted on the particle or
the antiparticle line since they give the same contributi
We do not give here the complete list of expressions at
8-11
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quantum-mechanical level, since this section does this
terms of Wilson loop operators. The former may be deriv
straightforwardly from the latter by spectral decompositio

Using the techniques of Refs.@14,15#, it is possible to
c

x-
-

e

03401
in
d
.

expressEn , Bn , E 3
(2) , E 3

(2,c) , and E 3
(2,norm) in terms of the

more familiar gluonic field correlators. We obtain~traces as
well as suitable Schwinger lines connecting the gluon fie
are understood if not explicitly displayed!5
En5
1

Nc
E

0

`

dttn^gE~ t !•gE~0!&, ~76!

Bn5
1

Nc
E

0

`

dttn^gB~ t !•gB~0!&, ~77!

E 3
(2,c)5

1

4Nc
E

0

`

dt1E
0

t1
dt2E

0

t2
dt3~ t22t3!3^$gE~ t1!•,gE~ t2!%$gE~ t3!•,gE~0!%&c , ~78!

E 3
(2,norm)52

1

4Nc
H E

0

`

dt1E
0

t1
dt2E

0

t2
dt3$@~ t22t3!31~ t12t3!3#^$gE~ t1!•,gE~ t2!%$gE~ t3!•,gE~0!%&c

1~ t12t2!3^$gEi~ t1!,gEj~ t2!%$gEi~ t3!,gEj~0!%&c14~ t12t2!3^gEi~ t1!gEj~ t2!gEj~ t3!gEi~0!&c%

22E
0

`

dt1E
0

t1
dt2~ t12t2!3$^gEi~ t1!@ iDi ,gEj #~ t2!gEj~0!&1^gEi~ t1!gEj~ t2!@ iDi ,gEj #~0!&

1^gEi~ t1!@ iDj ,gEj #~ t2!gEi~0!&%1E
0

`

dt1t1
3^gEi~ t1!†iDi ,@ iDj ,gEj #‡~0!&J 1

1

4
E0E41

1

3
E1E3 , ~79!

E 3
(2)[

1

4Nc
E

0

`

dt1E
0

t1
dt2E

0

t2
dt3 ~ t22t3!3H ^$gE~ t1!•,gE~ t2!%$gE~ t3!•,gE~0!%&c

2
4

Nc
^Tr@gE~ t1!•gE~ t2!#Tr@gE~ t3!•gE~0!#&cJ , ~80!
to

om-

efs.
is
ast
the

d
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is,

of
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se.
ec-
the
where

^$gE~ t1!•,gE~ t2!%$gE~ t3!•gE~0!%&c

[^$gE~ t1!•gE~ t2!%$gE~ t3!•gE~0!%&

2
1

Nc
^gE~ t1!•gE~ t2!&^gE~ t3!•gE~0!&, ~81!

and similarly for the other structures with four chromoele
tric fields that appear in Eqs.~79! and ~80!.

For further use, we also define

E 3
(2,t)5E 3

(2)1E 3
(2,norm), ~82!

E 3
(2,e.m.)5E 3

(2,c)1E 3
(2,norm). ~83!

IV. pNRQCD

A. Matching to pNRQCD

Expressions~27! and alike are no more than formal e
pansions inHI , i.e., in 1/m, until some dynamical assump
tion is made. We will assume a mass gap of orderLQCD
@mv2 between the lowest-lying excitation and the high
ones. Under this assumption all the excitations (n50) de-
-

r

couple from the ground state (n50), which is identified as
the only degree of freedom of pNRQCD. It corresponds
the singlet stateS in the pNRQCD Lagrangian~1!. Moreover,
the above expansion acquires a dynamical meaning, bec
ing an expansion inLQCD/m and v in the effective field
theory.

The above assumption is the same as was made in R
@14,15# in the situation without massless fermions. In th
work, we are including light fermions. Nevertheless, at le
in this paper, we will assume that this does not change
structure of the leading order solution~this was also assume
in Ref. @16#!. In other words, we will assume that the size
the typical splittings between the ground state~heavy
quarkonium! and the gluonic excitations~hybrids! is much
larger than the typical splittings produced by the solutions
the Schro¨dinger equation for the heavy quarkonium. This
indeed, supported by lattice simulations where the plots
the static potentials for the heavy quarkonium and hybr
show the same pattern after the inclusion of light fermio
@21#. Nevertheless, in principle, a new problem may ari
Once light fermions have been incorporated into the sp
trum, new gauge-invariant states appear in addition to

5Note that the quantityE used in Ref.@16# corresponds here to
NcE3.
8-12
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heavy quarkonium, hybrids, and glueballs. On the one ha
we have the states with no heavy quark content. Becaus
chiral symmetry, there is a mass gap, ofO(Lx), between the
Goldstone bosons, which are massless in the chiral limit,
the rest of the spectrum. We will consider that the Goldsto
bosons are ultrasoft degrees of freedom and thatLx

;LQCD, so that the rest of the spectrum should be integra
out. In addition to these, we also have bound states mad
one heavy quark and light quarks. In practice, we are c
sidering theQq̄-Q̄q system. The energy of this system
according to the heavy quark effective theory~HQET! count-
ing rules@22#:

mQq̄1mQ̄q52m12L̄. ~84!

Therefore, sinceL̄;LQCD, we will assume that they als
have to be integrated out. Problems may appear if we tr
study the heavy quarkonium near threshold. In this case t
is no mass gap between the heavy quarkonium and the
ation of aQq̄-Q̄q pair. Thus, if we want to study the heav
quarkonium near threshold, we should include these deg
of freedom in the spectrum~for a model-dependent approac
to this situation see, for instance,@23#!. We will not do so in
this paper. It may happen, however, that the mixing betw
the heavy quarkonium and theQq̄-Q̄q is small. Indeed, such
a mixing is suppressed in the largeNc counting.

Summarizing, light fermions contribute within this pictu
in three ways.

~1! Hard light fermions: they are encoded into the matc
ing coefficients of the NRQCD Lagrangian and obtain
from the computation of perturbative Feynman diagrams
the scalem.
03401
d,
of

d
e

d
of
-

to
re
re-

es

n

-

t

~2! Soft light fermions, a term that denotes, in a gene
way, all the fermions that are incorporated in the potentia
it is expected that their main effects can be simulated b
variation of the value of the parameters in the potentials.

~3! Ultrasoft light fermions: these are the ones that w
become pions and, since they are also ultrasoft degree
freedom, they should be incorporated in the effective L
grangian together with the heavy quarkonium. However,
will not consider them in the present paper, even if we do
expect to find conceptual problems in an eventual incorpo
tion.

In conclusion, the matching condition to pNRQCD for th
real part reads

ReE05Reh52
“

2

m
1V(0)1

V(1)

m
1

V(2)

m2
1•••. ~85!

At O(1/m) the matching has been performed in Ref.@14#
and atO(1/m2) in Ref. @15# ~for the case without light fer-
mions!. We refer to those articles for further details about t
structure of the potentials. For the imaginary piece, we h
the analogous matching condition:

Im E05Im h. ~86!

Using the results of the previous sections, we can now w
the first two terms in the 1/m expansion of Imh ~theP-wave-
dependent terms were obtained in Ref.@16#!:

Im h5
Im h(2)

m2
1

Im h(4)

m4
1•••, ~87!

where
Im h(2)52
CA

2
d (3)~r !$4 Im f 1~1S0!22S2@ Im f 1~1S0!2Im f 1~3S1!#14 Im f e.m.~

1S0!22S2@ Im f e.m.~
1S0!2Im f e.m.~

3S1!#%,

~88!

Im h(4)5CAT SJ
i j
“

id (3)~r !“ j@ Im f 1~2S11PJ!1Im f e.m.~
2S11PJ!#1

CA

2
VSJ

i j H“ i
“

j1
d i j

3
E1 ,d (3)~r !J @ Im g1~2S11SJ!

1Im ge.m.~
2S11SJ!#1

TF

3
T SJ

ii E 1d (3)~r ! Im f 8~2S11PJ!1
TF

9
E3“d (3)~r !“$4 Im f 8~1S0!22S2@ Im f 8~1S0!

2Im f 8~3S1!#%12TFcF
2B 1d (3)~r !H Im f 8~3S1!1

1

6
S2@ Im f 8~1S0!23 Im f 8~3S1!#J 1

TF

3
E 3

(2)d (3)~r !$4 Im f 8~1S0!

22 S2@ Im f 8~1S0!2Im f 8~3S1!#%2
CA

3
E 3

(2,t)d (3)~r !$4 Im f 1~1S0!22S2@ Im f 1~1S0!2Im f 1~3S1!#%

2CA

2

9
E3$“

2,d (3)~r !%H Im f 1~1S0!1Im f e.m.~
1S0!1

S2

2
@ Im f 1~3S1!2Im f 1~1S0!1Im f e.m.~

3S1!2Im f e.m.~
1S0!#J

22CAcF
2B 1d (3)~r !H Im f 1~1S0!1Im f e.m.~

1S0!1
S2

6
@ Im f 1~3S1!23 Im f 1~1S0!1Im f e.m.~

3S1!23 Im f e.m.~
1S0!#J

2
CA

3
E 3

(2,e.m.)d (3)~r !$4 Im f e.m.~
1S0!22S2@ Im f e.m.~

1S0!2Im f e.m.~
3S1!#%. ~89!
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The above expressions have been given in four dimensi
Therefore, they should be generalized tod dimensions if we
want to work in an modified-minimal-subtraction- (MS)-like
scheme in order to use the same scheme as for the NRQ
matching coefficient computation. This becomes relev
when logarithmic ultraviolet divergences appear in the n
perturbative constants. Hence, eventual lattice calculat
must be converted to theMS scheme in this case. Neverth
less, in several situations, it is not necessary to work in aMS
scheme if we only want to obtain the nonperturbative obje
from experiment, since the scheme dependence simply
into a redefinition of the nonperturbative constants. Fina
note also that in addition to the divergences in the nonp
turbative constants, which are due to large momentum tra
fersk, at some point there will also be ultraviolet divergenc
arising in quantum-mechanical perturbation theory, wh
are due to large relative momentap. These must also be
regulated in dimensional regularization andMS subtracted,
along the lines worked out in Ref.@24#.

B. Power counting in pNRQCD

With the above results, we are in a position to comp
the inclusive decays of heavy quarkonium into light partic
by using Eq.~2!. Before doing so, we have to specify som
power-counting rules in order to estimate the importance
the different terms of the pNRQCD Hamiltonian. Previo
discussions on this subject, some of which we will rep
here, can be found in Refs.@14,15#.

With the results of Sec. IV A and using Eq.~2!, the decay
width of S-wave quarkonium has schematically the followin
structure:

G;Im c42 f
d56 uRns0s~0!u2

m2 S 11
LQCD

2

m2
1••• D

1Im c42 f
d58S Rns0s~0!@“2Rns0s~0!#

m4

1
uRns0s~0!u2

m2

LQCD
2

m2
1••• D 1•••, ~90!

where c42 f stands for the NRQCD four-fermion matchin
coefficients andRns0s is theS-wave radial component of th
solution of the real piece of the Schro¨dinger equation:

~Reh!fn jls~r !5En jlsfn jls~r !, ~91!

with the normalization (us&spin denotes the normalized spi
component!:

fns0s~r !5Rns0s~r !
1

A4p
us&spin. ~92!

AlthoughEn jls coincides with the binding energy of the sy
tem at the order we are working at, it will no longer be
when iterations of imaginary parts start playing a role.

From Eq.~90!, we can see how the power counting has
be organized. On the one hand, we have an explicit exp
03401
s.

D
t
-

ns

ts
es
,
r-
s-
s
h

e
s

f

t

n-

sion in LQCD/m, independent of the details of the boun
state. In the most conservative situation (LQCD;mv), it
would correspond to having the power countingLQCD/m
;v. We can also find derivatives of the wave function d
vided bym. They typically scale like“/m;v. On the other
hand, the normalization condition of the wave function s
the scaling uRn jlsu2;(mv)3. This means that a forma
O(mv5) accuracy@leaving aside possibleas(m) suppres-
sions due to the NRQCD matching coefficients# is achieved
with Eq. ~90!. At the same order of accuracy, the decay wid
of P-wave quarkonium has the structure

G;Im c42 f
d58 u“Rn j1s~0!u2

m4
1•••. ~93!

In the above discussion, we have only considered
leading order power counting of the wave function at t
origin ;(mv)3. This accuracy is sufficient for theP-wave
function of Eq.~93!, as well as for the wave functions mu
tiplying LQCD

2 /m2 terms or with two“ in Eq. ~90! but not
for the leading order term. In this case, one has to take
account that the wave function at the origin also has suble
ing contributions in v: uRn jls(0)u2;(mv)3(11av1bv2

1•••). Therefore, we have to further specify the solution
Eq. ~91!, for which we have to set the power counting of th
potentials in the Schro¨dinger equation. Since we do no
know the specific dynamics of the different potentials, t
only thing we can do is to require consistency of the the
and allow, in principle, the most conservative counting. T
would correspond to setting the counting by the largest sc
that has been integrated out, i.e., the potentials would s
like (mv)d, d being their dimension.6 For definiteness, we
will also assumeas(m);vq with q.1.

Leading order. Consistency of the theory requires th
virial theorem to be satisfied. In other words, the potentia
leading order needs to satisfy

h(0)fn jls
(0) ~r !5S p2

m
1VLODfn jls

(0) ~r !5En jls
(0) fn jls

(0) ~r !,

~94!

with the power counting

p2/m;VLO;En jls
(0) ;mv2. ~95!

It follows that V(0);mv2 ~even if, using the most conserva
tive power counting, we would have obtainedV(0);mv).

6Notice that our power-counting rules are different from those
@1,25#. Whereas ours are meant to apply in the situationLQCD

@mv2, the power-counting rules in Refs.@1,25# rather follow the
countingLQCD;mv2. Indeed, if we takeLQCD;mv2 in our results
we obtain a similar power counting for the NRQCD matrix el
ments.
8-14
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Moreover, in our power counting we haveV(1)/m;mv2.7

Therefore, in the most conservative situation, we would h

VLO5V(0)1
V(1)

m
. ~96!

The important point here is that, at this order, the potentia
spin-independent (En jls

(0) [Enl
(0) and Rn jls

(0) [Rnl
(0)). Therefore,

the leading-orderP-wave function reads

fn1s
(0) ~r !5Rn1

(0)~r !^ r̂ u js&, ~97!

where u r̂ & is the normalized eigenstate of the position a
u js& stand forJ ~total angular momentum! andS eigenstates
such that

^ r̂ u j 0&5Yj
m~ r̂ !u0&spin ~ j 5 l 51!, ^ r̂ u j 1&5Y jm

1 ~ r̂ !,
~98!

wherem denotes the third component of the angular mom
tum and detailed expressions forY jm

1 ( r̂ ) can be found in Ref.
@26#, Appendix B.

Next-to-leading order. The O(1/m2) potential scales a
the most asV(2)/m2;mv3. Therefore, in the most conserva
tive situation, we would have

VNLO5
V(2)

m2
. ~99!

At this order, spin-dependent contributions start to appea
particular, the spin-dependent potential contributing to
S-wave function at the origin reads

dV5
S1•S2

m2
ReVS2

(1,1)
~r !, ~100!

where@15#

ReVS2
(1,1)

~r !5
2cF

2

3
i E

0

`

dt^̂ gB1~ t !•gB2~0!&&

12CA@Ref 1~1S0!2Ref 1~3S1!#d (3)~r !.

~101!

This potential produces the following correction to t
S-wave function:

Rns0s~0!

A4p
5

Rn0
(0)~0!

A4p
1

1

2m2 S s~s11!2
3

2D ^r50u

3
1

En0
(0)2h(0)

Pn ReVS2
(1,1)un0&, ~102!

7As a consequence, if the potentialV(1) is nonperturbative, we
have no general argument to considerV(1)/m subleading with re-
spect toV(0). A lattice simulation or some model-dependent stud
are, therefore, highly desirable to discern the issue. Whereas
difficult to obtain this information from the spectrum structure, t
study of the decays may perhaps shed some light on this prob
Finally, we note that, in the perturbative situation,V(1) has an extra
as

2 suppression. Further discussions can be found in Ref.@14#.
03401
e

is

-

In
e

where Pn[I 2un0&^n0u and ^r un jls&5fn jls
(0) (r ) @^r un0&

5fn0
(0)(r )#.

If the spin-dependent potential~100! is O(mv3), it just
provides the leading order spin-dependent correction to
S-wave function at the origin and one can use the differe
between vector and pseudoscalar decays to fix the valu
the correction. If the spin-dependent potential isO(mv4), it
provides a correction to theS-wave function squared at th
origin, which is of the same order as theO(v2) corrections
to the decay width that we have already evaluated. The
fore, in this last situation, Eq.~102! would account for the
full difference between the vector and pseudoscalar w
functions at the origin at relative orderO(v2), which is the
precision we are aiming at in this work. This last counti
seems to be supported by the size of the spin-depen
splittings in the bottomonium and charmonium spectra.

For the spin-independent contributions, we will make
assumption at this or higher orders, as their effects will
encoded into the wave functions, which will be left uneva
ated. Our results allow for the most conservative count
whereV(1)/m;mv2 and V(2)(spin-independent)/m2;mv3.
We note that, in this power counting, potentials with ima
nary part arise in the pNRQCD Hamiltonian at ord
mas(m)2v3 @where the powers inas(m) come from the
imaginary part of the four-fermion matching coefficients
NRQCD#. Therefore, corrections due to the iteration
imaginary terms, which could affect the validity of Eq.~2!,
are far beyond the accuracy of this paper. In fact, the gen
factorization formula put forward in@1# may not hold beyond
a certain order.

In any case, we do not rule out that a different pow
counting may also lead to consistent equations in the non
turbative regime for some specific ratios ofLQCD versusm
and versusp andk. This point deserves further investigatio
and may lead to a different implementation of the match
procedure. We recall that the issue of assessing the po
counting in the nonperturbative situation has been addre
before by Beneke@27# and by Fleminget al. @28#. In both
cases, the authors have given some freedom to the pos
size of the NRQCD matrix elements by introducing a para
eter l that interpolates between the power counting in
perturbative limit and other possible power countings
cording to the value ofl. In this respect, our formalism ma
shed more light to clarify this problem, since it incorporat
the factorization between the soft and the ultrasoft sca
allowing us to write the NRQCD matrix elements in terms
the wave function at the origin and of some bound-sta
independent constants. Another point of concern is whe
there are nonperturbative effects that are not accounted fo
the 1/m matching.

We conclude this section by giving a useful equality, va
in dimensional regularization,

Rnl
(0)~0!@“2Rnl

(0)~0!#

m4
52

uRnl
(0)~0!u2

m2

Enl
(0)

m
, ~103!

s
is

m.
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which follows from the fact that we know the behavior of th
potential and the wave function~up to a constant! at short
distances and that~see Appendix D!

^n, j ,l ,suV(0)ur50&5^n, j ,l ,suV(1)ur50&

50 ~ in dim. regularization!.

~104!

With this we have discussed the relative importance of
different terms that will appear in our evaluation of the dec
widths. The results can be found in Sec. VI.

V. THE MATCHING IN THE CASE MVšLQCDšMV 2

Although it is not clear whether quarkonia states satis
ing mv@LQCD@mv2 exist in nature (mv;k;p and mv2

;E will always be understood in the present section!, this
situation is worth investigating for several reasons. First
all, the calculation in the general case of Sec. III is nonsta
ard and, hence, any independent check of it, even if it is
particular case, is welcome. Secondly, the calculation in
case can be divided into two steps. The first step can
carried out by a perturbative calculation inas, which in-
volves far more familiar techniques. The second step, eve
it is nonperturbative inas, admits a diagrammatic represe
tation, which makes the calculation somewhat more intuiti
Third, the more detailed information on the potential allo
us to make important tests on how the terms in the poten
can be consistently reshuffled by means of unitary trans
mations @14#, as is illustrated in the example provided
Appendix E.

A. pNRQCD8

As mentioned in the Introduction, we shall use the na
pNRQCD8 for the EFT for energies belowmv. Sincemv
@LQCD, the integration of the energy scalemv, namely, the
matching between NRQCD and pNRQCD8, can be carried
out perturbatively inas. This is done following Refs.@4,6#.
A tree-level matching is sufficient, but higher orders in t
multipole expansion will be needed. We only display belo
the terms eventually required in the calculation:

LpNRQCD85Tr$S†~ i ]02hs!S1O†~ iD 02ho!O%

1TrH O†r•gE S1H.c.1
O†r•gE O

2
1

O†Or•gE

2 J
1

1

8
Tr$O†r ir jgDiEjO2O†Or ir jgDiEj%

1
1

24
Tr$O†r ir j r kgDiDjEk S1H.c.%

1
cF

2m
Tr$O†~s12s2!•gB S1H.c.%

2
1

4
Gmn

a Gmna, ~105!
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where the traces are over color space only. S and O
chosen here to transform as a 1/2^ 1/2 representation in spin
space~hences12s25s1^ 12211^ s2); hs andho read as
follows ~again we only display terms eventually required
the calculation!:

hs52
“

2

m
2Cf

as

r
2 i

CA

2

d (3)~r !

m2
$4 Im f 1~1S0!

22S2@ Im f 1~1S0!2Im f 1~3S1!#14 Im f e.m.~
1S0!

22S2@ Im f e.m.~
1S0!2Im f e.m.~

3S1!#%

1 i
CA

2

VSJ
i j

m4
$“ i

“

j ,d (3)~r !%@ Im g1~2S11SJ!

1Im ge.m.~
2S11SJ!#, ~106!

ho52
“

2

m
1S CA

2
2Cf D as

r
2 i

TF

2

d (3)~r !

m2
$4 Im f 8~1S0!

22S2@ Im f 8~1S0!2Im f 8~3S1!#%

1 iTFT SJ
i j
“

i
d (3)~r !

m4
“

j Im f 8~2S11PJ!. ~107!

The Feynman rules associated with this Lagrangian are
played in Fig. 1.

B. Matching pNRQCD to pNRQCD8

The matching of pNRQCD8 to pNRQCD can no longer
be done perturbatively inas, but it can indeed be done pe
turbatively in the following ratios of scales:LQCD/mv ~mul-
tipole expansion!, LQCD/m, andmv2/LQCD. The diagrams
contributing to the calculation are displayed in Figs. 2–9

We have focused on contributions toS-wave states
involving imaginary parts. Since the imaginary par
which are inherited from NRQCD, sit on loca
@d (3)(r ), “d (3)(r )“, etc.# terms in the pNRQCD8 La-
grangian, they tend to cancel when multiplied by ther ’s
arising from the multipole expansion. Hence, for an ima
nary part to contribute, it is necessary to have a suffici
number of derivatives~usually arising from themv2/LQCD
expansion! as to kill all ther ’s. Since derivatives are alway
accompanied by powers of 1/m, it implies that at a given
order of 1/m, only a finite number of terms in the multipol
expansion contribute. In our case a fourth order in the m
tipole expansion is sufficient. The natural way to organ
the calculation in our case would be to assign a sizemvp to
LQCD, 1,p,2 andvq to as, 1,q,2, and to carry out
the calculation at the desired order inv. However, our main
goal here is not the phenomenological relevance of the s
ationmv@LQCD@mv2, but providing an independent calcu
lation to support the results of Sec. IV A. Hence, irrespect
of whatp andq may be, we will only be interested in fishin
8-16
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up the imaginary pieces that contribute toS-wave states up to
order 1/m4.

The two diagrams in Fig. 2 correspond to the lead
contribution in theLQCD/mv and LQCD/m expansion, re-
spectively. Figure 3 displays the evaluation of each of th
in the mv2/LQCD expansion. The diagrams in Fig. 4 corr
spond to the next-to-leading order contributions in t
LQCD/mv expansion, and Figs. 5–9 display their evaluat

FIG. 1. The interaction vertices in pNRQCD8 which are needed
in order to calculate the decay width up to 1/m4.

FIG. 2. Diagrams corresponding to the leading contributions
(LQCD/mv)2 ~a! and (LQCD/m)2 ~b!. All corrections not contained

in Ē3
(2,t) andE3

(2) arise from them after expanding the internal prop
gators. This generates all terms exhibited in Fig. 3.
03401
g

in the mv2/LQCD expansion. It is then clear that the bas
skeleton of the calculation consists of thex5(LQCD/mv)2

and y5(LQCD/m)2 expansions, which suggests writing th
pNRQCD Hamiltonian as

h5hs1hx1h2x1hy1•••. ~108!

The interpolating fields of pNRQCD8 and pNRQCD will be
related by

SupNRQCD85Z1/2SupNRQCD

5~11Zx1Z2x1Zy1••• !1/2SupNRQCD

5F11
1

2 S Zx1Z2x1Zy2
1

4
Zx

2D1•••GSupNRQCD.

~109!

n

-

FIG. 3. Diagrams generated by those in Fig. 2.~a! correspond to
a P wave octet correction;~b! and~c! give rise to a chromomagneti
two-field correlator accompanying a spin-flip/octet and a non-fl
singlet imaginary coefficient, respectively;~d! produces the term
proportional toE3 times the binding energy;~e! shows the structure
introduced by the Img1(2S11SS)-proportional contact interaction.
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The matching calculation reads

E
2`

`

dte2 iEtE d3R^vacuT$S~R,x,t !

3S~0,x8,0!%uvac&upNRQCD8

5E
2`

`

dte2 iEtE d3RZ1/2^vacuT$S~R,x,t !

3S~0,x8,0!%uvac&upNRQCDZ
1/2†. ~110!

The right-hand side of the matching calculation has the
lowing structure~up to a globali factor, which is dropped!:

FIG. 4. Diagrams corresponding to the next-to-leading contri
tions in the (LQCD/mv)2 expansion. After expansion of the intern
propagators, as explained in the text, they produce the serie
graphs presented in Figs. 5–9, which originate the terms pro

tional to Ē3
(2,t) andE 3

(2) .
03401
l-

1

E2hs
1

1

E2hs
~hx1h2x1hy!

1

E2hs

1
1

2 S Zx1Z2x1Zy2
Zx

2

4 D 1

E2hs
1

1

E2hs

1

2

3S Zx1Z2x1Zy2
Zx

2

4 D †

1S Zx

2 D 1

E2hs
S Zx

2 D †

1
1

E2hs
hx

1

E2hs
hx

1

E2hs
1S Zx

2 D 1

E2hs

3hx

1

E2hs
1

1

E2hs
hx

1

E2hs
S Zx

2 D †

. ~111!

Hence, once we have made sure that, up to contact terms
left-hand side of Eq.~110! has exactly this structure, we ca

-

of
r-

FIG. 5. Diagrams stemming from Figs. 4~a! and 4~b!. They arise
from terms of the form @ ,(hs2E)#(1/2)$@(hs2E), #1@ ,(hs

2E)#%@(hs2E), # upon expansion of the octet propagators.

FIG. 6. Diagram generated by Fig. 4~c! after picking up in the
expansion of the middle octet propagator the term of the fo
@ ,(hs2E)#@Vo

c(r )2Vs
c(r )#@(hs2E), #.
8-18
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easily identify the contributions to the pNRQCD Ham
tonian from the second term of the expression~111!.

C. Calculation

Let us then proceed to the calculation of the left-hand s
of Eq. ~110! @in order to match Eq.~111! a globali factor will
also be dropped#.

Diagram~a! of Fig. 2 gives

1

E2hs

i

Nc
E

0

`

dt^ i r•gE~ t !e2 i (ho2E)ti r•gE~0!&
1

E2hs
.

~112!

The fact thatmv2/LQCD is small is implemented by expand

FIG. 7. All remaining diagrams generated by Fig. 4~c!. Here the
expansion of the octet propagators keeps the sequence@ ,(hs

2E)#(1/2)$@(hs2E), #1@ ,(hs2E)#%@(hs2E), # with suitable
gluonic vertices inserted in each case.
03401
e

ing the exponential. This guarantees that we will eventua
get the usual, energy-independent, potentials.

The first contributions arise atO(mv2/LQCD) from the
O(1/m4) P-wave@Fig. 3~a!# andS-wave@Fig. 3~e!# terms in
the octet potential of Eq.~107!:

~a!
i

E2hs

TFT SJ
ii Im f 8~2S11PJ!

3Ncm
4

3E
0

`

dtt^gE~ t !•gE~0!&
d (3)~r !

E2hs
, ~113!

FIG. 8. Diagrams generated by Fig. 4~d! after projecting out the
vacuum insertion and upon expanding both singlet and octet pr
gators. As seen, gluonic vertices are conveniently inserted i
propagator sequence of the form@ ,(hs2E)#(1/2)$@(hs2E), #
1@ ,(hs2E)#%@(hs2E), #.
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~e!
i

E2hs

TS Im g1~2S11SS!

m4

3E
0

`

dtt^gE~ t !•gE~0!&
d (3)~r !

E2hs
, ~114!

whereT SJ
i j are defined in Eqs.~58!–~61! andTS in Eq. ~65!.

At O(m2v4/LQCD
2 ) and higher, it is convenient to write

E2ho5E2hs1(Vo2Vs). Ill-defined expressions arise i
the calculation, from products of distributions~both products
of two delta functions and products of delta functions w
nonlocal potentials, which explode asr→0). It is most con-
venient to use dimensional regularization in this case, wh
sets all these terms to zero. This is shown in Appendix
where the relation to other regularizations is also discus
Having this in mind, it is clear that, at the order we a
interested in, Im(Vo2Vs)50 and Im (Vo2Vs)r50. Hence,
we only have to consider

1

E2hs
r ~E2hs!

2r
1

E2hs
. ~115!

If we decide to take one power (E2hs) to the right and one
to the left we have

FIG. 9. Diagrams contributing to the potential generated by
vacuum insertion in Fig. 4~d!. ~a! causes the structureE4E0 to ap-
pear. The four of them are responsible for theE3E1 term. The op-
eratorsn andj act through suitable commutations, which are n
reflected in the figures, on the vertices.H must be taken left and
right according to the prescription given in the text.
03401
h
,
d.

r21r @r ,hs#
1

E2hs
1

1

E2hs
@hs ,r #r1

1

E2hs
@hs ,r #

3@r ,hs#
1

E2hs
, ~116!

which does not produce any imaginary part. However,
equally acceptable expression is

r21
1

2
†r ,@r ,hs#‡

1

E2hs
1

1

E2hs

1

2
†@hs ,r #,r ‡

1
1

E2hs

1

2
$†@r ,hs#,hs‡,r%

1

E2hs
, ~117!

which does produce an imaginary part. This apparent p
dox only reflects the fact that expression~115! by itself ~as
well as some of the expressions we will find below! does not
determine uniquely its contribution to the potentials. Th
expression always leads to contact terms, wave-function
malization and potential, as is apparent in Eq.~116! and
~117!, but depending on how we decide to organize the c
culation, the terms associated with each of these pie
change. For instance, when matched to Eq.~111!, Eq. ~116!
gives

hx5@hs ,r #@r ,hs#,Zx5r @r ,hs#, ~118!

whereas Eq.~117! gives

hx5
1

2
$†@r ,hs#,hs‡,r%, Zx5

1

2
†r ,@r ,hs#‡. ~119!

This should not be a surprise. It has already been discu
in Ref. @14# that this ambiguity exactly corresponds to th
freedom of making unitary transformations in a quantu
mechanical Hamiltonian, and does not affect physical
servables. This is discussed in detail in Appendix E for
decay widths of theS-wave states we are concerned with.
order to fix the contribution to the potential of any term on
forever, we will use the following prescription. If we have a
expression with singlet propagators 1/(E2hs) only in the
external legs, and an even number of powers of (E2hs), we
will take the one closest to the left propagator to the left a
the one closest to the right propagator to the right, and rep
until no power is left except in contact terms. Accordingly,
the intermediate steps, when terms with a single external
1/(E2hs) and several powers of (E2hs) are produced, one
should take these powers toward the 1/(E2hs) leg until no
power is left except in contact terms. If the number of po
ers of (E2hs) is odd, we use the same prescription unti
single power is left. We then write (E2hs)5(E2hs)/2
1(E2hs)/2 and take one-half to the right and one-half
the left. Expressions with an internal singlet propagator a
appear, which require a more careful treatment as will
discussed after Eq.~128! below. Note that this prescription to
organize the calculation need not coincide with the presc
tion for fixing the wave-function normalization in Sec. IV A
Hence, we only expect to agree with the results of that s
tion up to a unitary transformation. Anyway, with this pr

e

t
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scription, Eq.~115! gives rise to the potential obtained in E
~116! and hence to no imaginary part.

At O(m3v6/LQCD
3 ) only the following two terms in

(E2ho)35(E2hs)
31(E2hs)(Vs2Vo)(E2hs)1••• con-

tribute, giving rise to

1

2
@~E2hs!r

21r2~E2hs!#1
3

2
~@hs ,r #r1r @r ,hs# !

1
1

2 S 1

E2hs
†hs ,@hs ,r #‡r1r †@r ,hs#,hs‡

1

E2hs
D

1
1

2 S †r @r ,hs#,hs‡
1

E2hs
1

1

E2hs
†hs ,@hs ,r #r ‡D1@hs ,r #

3@r ,hs#
1

E2hs
1

1

E2hs
@hs ,r #@r ,hs#

1
1

2 S 1

E2hs
†hs ,@hs ,r #‡@r ,hs#

1

E2hs

1
1

E2hs
@hs ,r #†@r ,hs#,hs‡

1

E2hs
D1r ~Vs2Vo!r

1
1

E2hs
@hs ,r #~Vs2Vo!r1r ~Vs2Vo!@r ,hs#

1

E2hs

1
1

E2hs
@hs ,r #~Vs2Vo!@r ,hs#

1

E2hs
.

It is the term in the fifth line and the first in the sixth line th
renders the contribution depicted in Fig. 3~d!:

~d!
2 i

E2hs

1

9

TS Imf 1~2S11SS!

m2 E
0

`

dtt3^gE~ t !•gE~0!&

3H d (3)~r !,
“

2

m2J 1

E2hs
. ~120!

At O(m4v8/LQCD
4 ) and higher, only imaginary parts beyon

1/m4 are produced.
Consider next the diagram Fig. 2~b!. Since the chromo-

magnetic moment already provides two powers of 1/m, only
the linear term in the expansion of the exponential cont
utes@Figs. 3~b! and 3~c!#. This gives
03401
-

~b!
i

E2hs

TFcF
2

Nc

TS Imf 8~322SS12S!

3Sm4

3E
0

`

dtt^gB~ t !•gB~0!&
d (3)~r !

E2hs
,

~c!
2 i

E2hs

cF
2 TS Im f 1~2S11SS!

3Sm4

3E
0

`

dtt^gB~ t !•gB~0!&
d (3)~r !

E2hs
. ~121!

Consider next Fig. 4~a!. Because of the fourr ’s in the ex-
pression, only the following term in the expansion (E
2ho)35(E2hs)

31••• contributes. We obtain

2 i

E2hs

TS Im f 1~2S11SS!

72m4
~d i j dkl1d ikd j l

1d i l d jk!E
0

`

dtt3^gEi~ t !†Dj ,@Dk,gEl~0!#‡&
d (3)~r !

E2hs
.

~122!

For the symmetric diagram, we have

2 i

E2hs

TS Im f 1~2S11SS!

72m4
~d i j dkl1d ikd j l

1d i l d jk!E
0

`

dtt3^†Di ,@Dj ,gEk~ t !#‡gEl~0!&
d (3)~r !

E2hs
.

~123!

In fact both contributions are the same, adding up to@see
formula ~i! above Eq.~15! of Ref. @14##:

i

E2hs

TS Im f 1~2S11SS!

12m4 E
0

`

dtt3^@D,•gE~ t !#

3@D,•gE~0!#&
d (3)~r !

E2hs
. ~124!

Consider next Fig. 4~b!. The only contributions come
from (E2ho)35(E2hs)

31••• in one octet propagator an
1 in the other. We obtain@Fig. 5~b!#
f

1

E2hs

TS Im f 1~2S11SS!

12m4
~d i j dkl1d ikd j l 1d i l d jk!E

0

`

dt1E
0

t1
dt2@~ t12t2!31t2

3#^gEi~ t1!@Dj ,gEk#~ t2!gEl~0!&
d (3)~r !

E2hs
.

~125!

Then consider Fig. 4~c!. From here we get several contributions. Because of the fourr ’s we need a total of three powers o
(E2ho). When all the powers come from the octet propagator in the middle, we get contributions from (E2ho)35(E
2hs)

31(E2hs)(Vs2Vo)(E2hs)1•••. The ones from the second term read~Fig. 6!
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i

E2hs

TS

6Ncm
4

@TF Im f 8~2S11SS!2Nc Im f 1~2S11SS!#E
0

`

dt1E
0

t1
dt2E

0

t2
dt3~ t22t3!3H ^$gE~ t1!,•gE~ t2!%$gE~ t3!,•gE~0!%&

2
4

Nc
^Tr@gE~ t1!•gE~ t2!#Tr@gE~ t3!•gE~0!#&J d (3)~r !

E2hs
. ~126!

When a power of (E2ho) does not come from the octet propagator in the middle, all the powers can be substitutedE
2hs). If we put these contributions together with the first term before Eq.~126!, we obtain~Fig. 7!

i

E2hs

1

12m4TS Im f 1~2S11SS!H E
0

`

dt1E
0

t1
dt2E

0

t2
dt3@~ t12t3!31t2

3#F ^$gE~ t1!•,gE~ t2!%$gE~ t3!•,gE~0!%&

2
4

Nc
^Tr@gE~ t1!•gE~ t2!# Tr@gE~ t3!•gE~0!#&G1E

0

`

dt1E
0

t1
dt2E

0

t2
dt3@~ t12t2!31t3

3#S F ^$gEi~ t1!,gEj~ t2!%

3$gEi~ t3!,gEj~0!%&2
4

Nc
^Tr@gEi~ t1!gEj~ t2!# Tr@gEi~ t3!gEj~0!#&G1F ^$gEi~ t1!,gEj~ t2!%$gEj~ t3!,gEi~0!%&

2
4

Nc
^Tr@gEi~ t1!gEj~ t2!#Tr@gEj~ t3!gEi~0!#&G D J d (3)~r !

E2hs
. ~127!
e
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Consider next Fig. 4~d!. Clearly this diagram contains th
iteration of lower-order potentials, which must be isolate
This is achieved by adding and subtracting the project
operator into the gluonic ground state 15(12u0&^0u)
1u0&^0u. The piece (12u0&^0u) contains new contributions
to the potential only, whereas the pieceu0&^0u contains both
the iteration of lower-order potentials and new contributio
to the potential. Consider first the piece (12u0&^0u). It is
identical to Fig. 4~c! by taking Vo→Vs in the expression
before Eq.~126! and changing the chromoelectric field co
relators accordingly. We then have~Fig. 8!

i

E2hs

1

3Ncm
4TS Im f 1~2S11SS!H E

0

`

dt1E
0

t1
dt2E

0

t2
dt3@~ t1

2t3!31t2
3#@^Tr@gE~ t1!•gE~ t2!# Tr@gE~ t3!•gE~0!#&

2^gE~ t1!•gE~ t2!&^gE~ t3!•gE~0!&#

1E
0

`

dt1E
0

t1
dt2E

0

t2
dt3@~ t12t2!31t3

3#

3~@^Tr@gEi~ t1!gEj~ t2!# Tr@gEi~ t3!gEj~0!#&

2^gEi~ t1!gEj~ t2!&^gEi~ t3!gEj~0!&#

1@^Tr@gEi~ t1!gEj~ t2!# Tr@gEj~ t3!gEi~0!#&

2^gEi~ t1!gEj~ t2!&^gEj~ t3!gEi~0!&# !J d (3)~r !

E2hs
. ~128!

Consider next the contribution fromu0&^0u. The vacuum in-
sertion leads to an internal singlet propagator. To be spec
we have
03401
.
n

s

c,

2 i

E2hs

1

Nc
2E

0

`

dt^ i r•gE~ t !e2 i (ho2E)ti r•gE~0!&

3
1

E2hs
E

0

`

dt8^ i r•gE~ t8!e2 i (ho2E)t8i r•gE~0!&
1

E2hs
.

~129!

The exponentials of (E2ho) will be expanded. In order to
be consistent with the calculation of the lower-order pote
tials and subtract only their iteration, we must treat the po
ers of (E2ho) at each side of the internal singlet propaga
exactly as we did in the calculation of the lower-order pote
tials. Let us illustrate how it works when we have two pow
ers of (E2ho) on each side. The only contributions occ
when (E2ho);(E2hs). If we write the propagator in the
middle as 1/(E2hs)5@1/(E2hs)#(E2hs)@1/(E2hs)# we
can use Eqs.~115! and ~116! in order to obtain

S r21r @r ,hs#
1

E2hs
1

1

E2hs
@hs ,r #r1

1

E2hs
@hs ,r #

3@r ,hs#
1

E2hs
D ~E2hs!S r21r @r ,hs#

1

E2hs
1

1

E2hs

3@hs ,r #r1
1

E2hs
@hs ,r #@r ,hs#

1

E2hs
D . ~130!

We can easily identify the contributions that match the f
lowing terms in Eq.~111!:
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S Zx

2 D 1

E2hs
S Zx

2 D †

1
1

E2hs
hx

1

E2hs
hx

1

E2hs

1S Zx

2 D 1

E2hs
hx

1

E2hs
1

1

E2hs
hx

1

E2hs
S Zx

2 D †

.

~131!

We also see that, apart from the terms above, there are a
tional terms in Eq.~130! that may~and do! eventually lead to
new contributions to the potential~none of them with imagi-
nary parts for this example!. For them we use the same pr
scription as stated at the beginning of the section. The c
tributions to the imaginary parts come from the followin
terms in the expansion only:~i! an (E2ho)4 from an octet
propagator and a 1 from the other one~Fig. 9, first diagram!,
and ~ii ! an (E2ho)3 from an octet propagator and an (E
2ho) from the other one~Fig. 9, all of them!. They read

~ i!
7i

9Nc

Im f 1~2S11SS!

m4

TS

hs2E S E
0

`

dtt4^gE~ t !•gE~0!& D
3S E

0

`

dt8^gE~ t8!•gE~0!& D d (3)~r !

hs2E
,

03401
di-

n-

~ ii !
4i

27Nc

Im f 1~2S11SS!

m4

TS

hs2E S E
0

`

dtt3^gE~ t !•gE~0!& D
3S E

0

`

dt8t8^gE~ t8!•gE~0!& D d (3)~r !

hs2E
.

D. Results

Combining all the above calculations we obtain the sa
result as in Sec. IV A, except for the terms proportional
Im(2S11SS). With the mere replacement

E 3
(2,t)→Ē3

(2,t) ,

E 3
(2,e.m.)→Ē3

(2,e.m.), ~132!

where we have defined
Ē3
(2,t)52

1

8Nc
H E

0

`

dt1E
0

t1
dt2E

0

t2
dt3@~ t12t3!31t2

3#F ^$gE~ t1!•,gE~ t2!%$gE~ t3!•,gE~0!%&2
4

Nc
^gE~ t1!•gE~ t2!&

3^gE~ t3!•gE~0!&G1E
0

`

dt1E
0

t1
dt2E

0

t2
dt3@~ t12t2!31t3

3#S F ^$gEi~ t1!,gEj~ t2!%$gEi~ t3!,gEj~0!%&

2
4

Nc
^gEi~ t1!gEj~ t2!&^gEi~ t3!gEj~0!&G1F ^$gEi~ t1!,gEj~ t2!%$gEj~ t3!,gEi~0!%&2

4

Nc
^gEi~ t1!gEj~ t2!&

3^gEj~ t3!gEi~0!&G D2 i ~d i j dkl1d ikd j l 1d i l d jk!E
0

`

dt1E
0

t1
dt2@~ t12t2!31t2

3#^gEi~ t1!@Dj ,gEk#~ t2!gEl~0!&

1E
0

`

dtt3^@D•,gE~ t !#@D•,gE~0!#&1
7

6
E4E01

2

9
E3E1J ~133!

and

Ē3
(2,e.m.)52

1

2Nc
2H E

0

`

dt1E
0

t1
dt2E

0

t2
dt3@~ t12t3!31t2

3#@^Tr@gE~ t1!•gE~ t2!#Tr@gE~ t3!•gE~0!#&2^gE~ t1!•gE~ t2!&

3^gE~ t3!•gE~0!&#1E
0

`

dt1E
0

t1
dt2E

0

t2
dt3@~ t12t2!31t3

3#F S ^$gEi~ t1!,gEj~ t2!%$gEi~ t3!,gEj~0!%&

2
4

Nc
^gEi~ t1!gEj~ t2!&^gEi~ t3!gEj~0!& D1S ^$gEi~ t1!,gEj~ t2!%$gEj~ t3!,gEi~0!%&2

4

Nc
^gEi~ t1!gEj~ t2!&

3^gEj~ t3!gEi~0!& D G2 i ~d i j dkl1d ikd j l 1d i l d jk!E
0

`

dt1E
0

t1
dt2@~ t12t2!31t2

3#^gEi~ t1!@Dj ,gEk#~ t2!gEl~0!&

1E
0

`

dtt3^@D•,gE~ t !#@D•,gE~0!#&1
7

6
E4E01

2

9
E3E1J ~134!
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the same expressions apply.
As mentioned before, the difference is due to the differ

prescription for fixing the wave-function normalization
Sec. III B. In Appendix E we show that there exists an u
tary transformation such that our results can be taken in
form of Sec. IV A, and hence they are equivalent for
purposes.

In fact, it is somewhat surprising that the two calculatio
lead to identical results~up to a unitary transformation!. On
general grounds, one could only expect that the result in
section would be a particular case of the general result
Sec. III. In fact the real parts of the potentials inh are indeed
particular cases of the potentials in@15#. However, since we
did not need their specific form at any stage we have not
generality in our final expressions. More surprising is t
fact that the matching coefficients of the terms in the mu
pole expansion in pNRQCD8 ~105! were only calculated a
tree level here, whereas the expressions in Sec. III co
spond to an all-loop result. This indicates that there mus
a symmetry protecting these terms against higher-loop
rections, which may~or may not! be an extension of rep
arametrization invariance@29# or Poincare´ invariance itself
@30#.8

In summary, we have presented in this section an alte
tive derivation of Eqs.~141!–~146!, which does not rely so
heavily on the 1/m expansion. The matching from NRQC
to pNRQCD8, which can be done perturbatively inas, can
indeed be implemented in the 1/m expansion, as originally
proposed@4#, but it can also be done entirely in the fram
work of the threshold expansion@31,13#, where the kinetic
term is kept in the denominator for potential loop contrib
tions and the on-shell condition is used~the results obtained
03401
t

-
e

l

s

is
of

st
e
-

e-
e
r-

a-

-

in either way are related by local field redefinitions!. The
matching between pNRQCD8 and pNRQCD is done in the
LQCD/mv, LQCD/m, and mv2/LQCD expansions. The ap
proaches taken in these two steps are quite different from
strict 1/m expansion of Sec. III, and the coincidence of t
results strongly supports their correctness.

VI. RESULTS

In this section we list our expressions forS-wave decays
up to O(c„as(m)…mv33(LQCD

2 /m2,E/m)) and for P-wave

decays up toO(c„as(m)…mv5). The P-wave decay widths
were first obtained in@16# and are given here for complete
ness. TheS-wave decay widths are new. In order to help t
reader and for further convenience, we will start by recallin
at the same level of accuracy, the expressions for the de
widths as they are known from pNRQCD. In the followin
we define the radial part of the vectorS-wave function as
Rn101[Rn0

V 5Rn0
(0)@11O(v)# and the radial part of the pseu

doscalarS-wave function asRn000[Rn0
P 5Rn0

(0)@11O(v)#.

The quantityRn1
(0)8 is the derivative of the leading orde

P-wave function. The symbolsV andP stand for the vector
and pseudoscalarS-wave heavy quarkonium and the symb
x for the genericP-wave quarkonium@the statesx(n10) and
x(nJ1) are usually calledh„(n21)P… and xJ„(n21)P…,
respectively#.

A. Decay widths in NRQCD

Including up to the NRQCD four-fermion operators
dimension 8, the inclusive decays of heavy quarkonia
given by
G~VQ~nS!→LH !5
2

m2 S Im f 1~3S1!^VQ~nS!uO1~3S1!uVQ~nS!&1Im f 8~3S1!^VQ~nS!uO8~3S1!uVQ~nS!&1Im f 8~1S0!

3^VQ~nS!uO8~1S0!uVQ~nS!&1Im g1~3S1!
^VQ~nS!uP1~3S1!uVQ~nS!&

m2

1Im f 8~3P0!
^VQ~nS!uO8~3P0!uVQ~nS!&

m2 1Im f 8~3P1!
^VQ~nS!uO8~3P1!uVQ~nS!&

m2

1Im f 8~3P2!
^VQ~nS!uO8~3P2!uVQ~nS!&

m2 D , ~135!

G~PQ„nS!→LH…5
2

m2 S Im f 1~1S0!^PQ~nS!uO1~1S0!uPQ~nS!&1Im f 8~1S0!^PQ~nS!uO8~1S0!uPQ~nS!&1Im f 8~3S1!

3^PQ~nS!uO8~3S1!uPQ~nS!&1Im g1~1S0!
^PQ~nS!uP1~1S0!uPQ~nS!&

m2

1Im f 8~1P1!
^PQ~nS!uO8~1P1!uPQ~nS!&

m2 D , ~136!

8For the leading order term, the nonrenormalization was verified at one loop in@11#.
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G~xQ~nJS!→LH !5
2

m2 S Im f 1~2S11PJ!
^xQ~nJS!uO1~2S11PJ!uxQ~nJS!&

m2
1 f 8~2S11SS!^xQ~nJS!uO8~1S0!uxQ~nJS!& D .

~137!

At the same order the electromagnetic decays are given by

G(VQ~nS…→e1e2!5
2

m2 S Im f ee~
3S1!^VQ~nS!uOe.m.~

3S1!uVQ~nS!&1Im gee~
3S1!

^VQ~nS!uPe.m.~
3S1!uVQ~nS!&

m2 D ,

~138!

G~PQ~nS!→gg!5
2

m2 S Im f gg~1S0!^PQ~nS!uOe.m.~
1S0!uPQ~nS!&1Im ggg~1S0!

^PQ~nS!uPe.m.~
1S0!uPQ~nS!&

m2 D ,

~139!

G~xQ~nJ1!→gg!52 Im f gg~3PJ!
^xQ~nJ1!uOe.m.~

3PJ!uxQ~nJ1!&

m4
for J50,2. ~140!

B. Decay widths in pNRQCD

Up to O(c„as(m)…mv33(LQCD
2 /m2,E/m)) for the S wave andO(c„as(m)…mv5) for the P wave, the inclusive decays o

heavy quarkonia are given in pNRQCD by

G„VQ~nS!→LH…5
CA

p

uRn0
V ~0!u2

mQ
2 F Im f 1~3S1!S 12

En0
(0)

m

2E3

9
1

2E 3
(2,t)

3m2
1

cF
2B 1

3m2 D 2Im f 8~3S1!
2~CA/22Cf !E 3

(2)

3m2

2Im f 8~1S0!
~CA/22Cf !cF

2B 1

3m2 1Im g1~3S1!S En0
(0)

m
2

E1

m2D 2@ Im f 8~3P0!13 Im f 8~3P1!

15 Im f 8~3P2!#
~CA/22Cf !E 1

9m2 G , ~141!

G„PQ~nS!→LH…5
CA

p

uRn0
P ~0!u2

m2 F Im f 1~1S0!S 12
En0

(0)

m

2E3

9
1

2E 3
(2,t)

3m2
1

cF
2B 1

m2 D 2Im f 8~1S0!
2~CA/22Cf !E 3

(2)

3m2

2Im f 8~3S1!
~CA/22Cf !cF

2B 1

m2 1Im g1~1S0!S En0
(0)

m
2

E1

m2D 2Im f 8~1P1!
~CA/22Cf !E 1

m2 G , ~142!

G„xQ~nJS!→LH…5
CA

p

uR n1
(0)8 ~0!u2

m4 F3 Im f 1~2S11PJ!1
2TF

3CA
Im f 8~2S11SS!E3G . ~143!

At the same order the electromagnetic decays are given by

G„VQ„nS)→e1e2
…5

CA

p

uRn0
V ~0!u2

m2 F Im f ee~
3S1!S 12

En0
(0)

m

2E3

9
1

2E 3
(2,e.m.)

3m2
1

cF
2B1

3m2 D 1Im gee~
3S1!S En0

(0)

m
2

E1

m2D G ,

~144!

G„PQ~nS!→gg…5
CA

p

uRn0
P ~0!u2

m2 F Im f gg~1S0!S 12
En0

(0)

m

2E3

9
1

2E 3
(2,e.m.)

3m2
1

cF
2B1

m2 D 1Im ggg~1S0!S En0
(0)

m
2

E 1

m2D G , ~145!
034018-25
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G„xQ~nJ1!→gg…53
CA

p

uRn1
(0)8~0!u2

m4
f gg~3PJ!

for J50,2. ~146!

C. NRQCD matrix elements

By comparing the decay widths in NRQCD and pNRQC
we obtain the followingdictionary between the matrix ele
ments of NRQCD and the nonperturbative constants of
RQCD, valid up to ~once normalized to m) O„v3

3(LQCD
2 /m2,E/m)… for the S-wave matrix elements and u

to O(v5) for the P-wave matrix elements:

^VQ~nS!uO1~3S1!uVQ~nS!&

5CA

uRn0
V ~0!u2

2p S 12
En0

(0)

m

2E3

9
1

2E 3
(2,t)

3m2
1

cF
2B 1

3m2 D ,

~147!

^PQ~nS!uO1~1S0!uPQ~nS!&

5CA

uRn0
P ~0!u2

2p S 12
En0

(0)

m

2E3

9
1

2E 3
(2,t)

3m2
1

cF
2B 1

m2 D ,

~148!

^VQ~nS!uOe.m.~
3S1!uVQ~nS!&

5CA

uRn0
V ~0!u2

2p S 12
En0

(0)

m

2E3

9
1

2E 3
(2,e.m.)

3m2
1

cF
2B1

3m2 D ,

~149!

^PQ~nS!uOe.m.~
1S0!uPQ~nS!&

5CA

uRn0
P ~0!u2

2p S 12
En0

(0)

m

2E3

9
1

2E 3
(2,e.m.)

3m2
1

cF
2B1

m2 D ,

~150!

^xQ~nJS!uO1~2S11PJ!uxQ~nJS!&

5^xQ~nJS!uOe.m.~
2S11PJ!uxQ~nJS!&

5
3

2

CA

p
uR n1

(0)8 ~0!u2, ~151!

^VQ~nS!uP1~3S1!uVQ~nS!&5^PQ~nS!uP1~1S0!uPQ~nS!&

5^VQ~nS!uPe.m.~
3S1!uVQ~nS!&

5^PQ~nS!uPe.m.~
1S0!uPQ~nS!&

5CA

uRn0
(0)~0!u2

2p
~mEn0

(0)2E1!,

~152!
03401
-

^VQ~nS!uO8~3S1!uVQ~nS!&

5^PQ~nS!uO8~1S0!uPQ~nS!&

5CA

uRn0
(0)~0!u2

2p S 2
2~CA/22Cf !E 3

(2)

3m2 D , ~153!

^VQ~nS!uO8~1S0!uVQ~nS!&

5
^PQ~nS!uO8~3S1!uPQ~nS!&

3

5CA

uRn0
(0)~0!u2

2p S 2
~CA/22Cf !cF

2B 1

3m2 D , ~154!

^VQ~nS!uO8~3PJ!uVQ~nS!&

5
^PQ~nS!uO8~1P1!uPQ~nS!&

3

5~2J11!CA

uRn0
(0)~0!u2

2p S 2
~CA/22Cf !E1

9 D , ~155!

^xQ~nJS!uO8~1S0!uxQ~nJS!&5
TF

3

uRn1
(0)8~0!u2

pm2
E3 . ~156!

Any otherS-wave dimension 6 matrix element is 0 at nex
to-next-to-leading order~NNLO! and any otherS-wave di-
mension 8 matrix element is 0 at LO.

Equation~152! is worth emphasizing. It is of thesinglet
type but, because of the term proportional toE1, its leading
contribution is not only proportional to what one would e
pect from a pure singlet potential model. In Ref.@32# the
authors have also elaborated on Eq.~152!. Within the context
of NRQCD @1#, they use the leading equations of motion9

the power-counting rules of@1,25# and some arguments t
neglect some masslike terms, which could be generated
der regularization. They get

^VQ~nS!uP1~3S1!uVQ~nS!&Ref. @32#5CA

uRn0
(0)~0!u2

2p
mEn0

(0) ,

~157!

^PQ~nS!uP1~1S0!uPQ~nS!&Ref. @32#5CA

uRn0
(0)~0!u2

2p
mEn0

(0) ,

~158!

where the term proportional toE1 is missing. Nevertheless
this does not necessarily reflect any inconsistency in any
the derivations since, according to the~perturbativelike!
power-counting rules of@1,25#, the term due toE1 would be
subleading. In any case, it would be very interesting to
how a term proportional toE1 would appear in the derivation
of Ref. @32#. Here, we would only like to point out the pos
sibility that anE1 /m term may show up as a correction to th

9We have also used the equations of motion in order to derive
~103!. Nevertheless, we have done so in the context of pNRQC
8-26
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neglected masslike term in Ref.@32#. Finally, let us note that
in the dynamical situationmv;LQCD, where E1;LQCD

2

;m2v2;mEn0
(0) , both terms on the right-hand side of E

~152! are of the same order and contribute to the decay w
at orderc„as(m)…mv5. Phenomenologically this is particu
larly relevant to the case of pseudoscalar decays into l
hadrons and to the electromagnetic decays. In the cas
vector decays into light hadrons the contribution com
from the operator̂VQ(nS)uP1(3S1)uVQ(nS)& may not be so
important since the matching coefficient Img1(3S1)
;as(m)3 is suppressed by a factoras(m) with respect to the
others @with the exception of Imf 1(3S1) and Imf 8(3P1),
which are also of orderas(m)3).

D. Evolution equations

In @1# evolution equations for the four-fermion operato
were obtained. If we focus on the states that we are stud
in this paper, the following evolution equations for th
NRQCD matrix elements are obtained:

^VQ~nS!uS n
d

dn
O1~3S1! D uVQ~nS!&

5
8as

3pm2
@^VQ~nS!uO8~3P0!uVQ~nS!&

1^VQ~nS!uO8~3P1!uVQ~nS!&

1^VQ~nS!uO8~3P2!uVQ~nS!&

2Cf^VQ~nS!uP1~3S1!uVQ~nS!&#, ~159!

^PQ~nS!uS n
d

dn
O1~1S0! D uPQ~nS!&

5
8as

3pm2
@^PQ~nS!uO8~1P1!uPQ~nS!&

2Cf^PQ~nS!uP1~1S0!uPQ~nS!&#, ~160!

^VQ~nS!uS n
d

dn
Oe.m.~

3S1! D uVQ~nS!&

52
8Cfas

3pm2
^VQ~nS!uPe.m.~

3S1!uVQ~nS!&,

~161!

^PQ~nS!uS n
d

dn
Oe.m.~

1S0! D uPQ~nS!&

52
8Cfas

3pm2
^PQ~nS!uPe.m.~

1S0!uPQ~nS!&.

~162!

Since we have, atO(as) and leading-log accuracy,

n
d

dn
E3512Cf

as

p
, ~163!
03401
th

ht
of

g

n
d

dn
E 3

(2)5n
d

dn
E 3

(2,c)5n
d

dn
E 3

(2,t)50, ~164!

Equations~147!–~150! are compatible with the evolution
equations~158!–~161! at leading-log accuracy. Note that a
this order there is non dependence in the states, and hen
the derivatives with respect ton can be taken out of the
expectation values. In Ref.@16# it was proved that Eq.~162!
gives the correct running for the octet operator of Eq.~156!.
In Appendix C, the reader can find the evolution equatio
and their leading order solutions for the imaginary parts
all the four-fermion matching coefficients needed in th
work.

VII. MODEL-INDEPENDENT PREDICTIONS

The inclusive decays of the heavy quarkonium~either
hadronic or electromagnetic! are usually considered up to
and including, NRQCD matrix elements of four-fermion o
erators of dimension 8. This means to consider
O(1/m2,1/m4) local four-fermion operators of the NRQCD
Lagrangian. With this accuracy, the decay into light hadro
of a vectorS-wave state is described in NRQCD by the m
trix elements of two singlet operators@O1(3S1) andP1] and
three octet operators@O8(3S1), O8(1S0), andO8(P)]. The
corresponding pseudoscalarS-wave state decay needs, at th
same level of accuracy, the additional knowledge of the m
trix element of the singlet operatorO1(1S0). The electro-
magnetic decays of the sameS states need the additiona
knowledge of the matrix elements of the singlet electrom
netic operatorsOe.m.(

3S1) andOe.m.(
1S0), respectively. The

decay of aP-wave quarkonium state into light hadrons a
the corresponding electromagnetic decay are describe
NRQCD with the above accuracy by the matrix element o
singlet@O1(P)# and an octet@O8(1S0)# operator. If we con-
sider that in the bottomonium system in principle 14S- and
P-wave states lie below threshold@Y(nS) andhb(nS) with
n51,2,3; hb(nP) andxbJ(nP) with n51,2 andJ50,1,2]
and that in the charmonium system this is the case for e
states @c(nS) and hc(nS) with n51,2; hc(1P) and
xcJ(1P) with J50,1,2], all the bottomonium and charmo
nium S- andP-wave decays into light hadrons and into ph
tons ore1e2 are described in NRQCD up toO(1/m4) by 46
unknown NRQCD matrix elements~40 for theS-wave de-
cays and six for theP-wave decays!. These matrix elements
have to be fixed either by lattice simulations@33# or by fitting
the data@34#. Only in the specific case of matrix elements
singlet operators does NRQCD allow an interpretation
terms of quarkonium wave functions and one can resor
potential models.

At the same level of accuracyS- and P-wave bottomo-
nium and charmonium decays are described in pNRQC
under the dynamical assumptionLQCD@mv2, by only 19
nonperturbative parameters. These are the 13 wave func
~one for each of the tenS-wave quarkonium states below
threshold, for which we need to distinguish different sp
states, and a total number of three for theP-wave quarko-
nium states! and six universal nonperturbative paramete
which do not depend on the flavor and on the state (E1 , E3 ,
8-27
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B1 , E 3
(2) , E 3

(2,t) , andE 3
(2,e.m.)).

In the above discussion we have counted NRQCD ma
elements by their dimensionality only. A more refined disc
sion would require that a maybe less conservative po
counting be assigned to the NRQCD matrix elements as
as that theas(m) suppression due to the short-distan
NRQCD matching coefficients be taken into account. As
have already mentioned throughout the paper, the po
counting of the NRQCD matrix elements is an open issue
consider all the possibilities and phenomenological con
quences goes beyond the scope of the present paper, w
aim is to set the theoretical framework. However, we wo
like to mention a few things. In the standard NRQCD pow
counting @25#, the octet matrix elements areO(v4) sup-
pressed forS-wave decays if compared with the leading o
der. This is not so within our framework where, assuming
countingLQCD;mv, they would only beO(v2) suppressed
This is potentially relevant toG(V→LH) since Imf 1(3S1) is
O„as(m)… suppressed with respect to Imf 8(S). In other
words, the octet matrix element effects could potentially
much more important than usually thought for these deca
It would be interesting to analyze this possibility further.

The dramatic reduction in the number of paramet
makes it possible, in the framework of pNRQCD, to form
late several new predictions with respect to NRQCD. In p
ticular, it is possible to relate information gained from dec
widths of quarkonium with a specific flavor and princip
quantum number to decay widths of quarkonium with diffe
ent flavor and/or principal quantum number. Following th
strategy in@16# the nonperturbative parameterE3 has been
fixed from the charmoniumP-wave decay data and used
predict ratios ofP-wave decay widths for the bottomonium
system~in this case and at leading order there is no ambi
ity in the relative size between the singlet and the octet c
tributions!. Here we will concentrate on some exact mod
independent relations valid forS-wave decays.

Let us consider the ratios of hadronic and electromagn
decay widths for states with the same principal quant
number:

Rn
V5

G~VQ~nS!→LH !

G~VQ~nS!→e1e2!
, ~165!

Rn
P5

G~PQ~nS!→LH !

G~PQ~nS!→gg!
. ~166!

Ten of these ratios exist, ten being the number of bottom
nium and charmonium states below threshold. As we d
cussed above, in NRQCD, and if one includes all
NRQCD operators up toO(1/m4), these ten ratios are de
scribed by 40 nonperturbative parameters. It is a spec
prediction of pNRQCD that, for the states for which the a
sumptionLQCD@mv2 holds, the wave-function dependen
drops out from the right-hand side of Eqs.~164! and ~165!.
The residual flavor dependence is encoded in the power
1/m, in En0

(0) , and in the Wilson coefficients, while the re
sidual dependence on the principal quantum number is
coded in the leading order binding energyEn0

(0) . In principle,
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if all the ten bottomonium and charmoniumS-wave states
below threshold belonged to the dynamical regimeLQCD
@mv2, then, in the framework of pNRQCD, the ratios o
hadronic and electromagnetic decay widths would be
scribed by the six nonperturbative universal parameters lis
above only.

In pNRQCD, the expression for the ratios betweenRn
V and

Rn
P with different principal quantum number is particular

simple. We obtain up to orderv2 ~with the countingLQCD

;mv) „M (nS)22m5En0
(0)@11O(v)#, M (nS) being the

meson mass…

Rn
V

Rm
V 511S Im g1~3S1!

Im f 1~3S1!
2

Im gee~
3S1!

Im f ee~
3S1!

D M ~nS!2M ~mS!

m
,

~167!

Rn
P

Rm
P 511S Im g1~1S0!

Im f 1~1S0!
2

Im ggg~1S0!

Im f gg~1S0!
D M ~nS!2M ~mS!

m
.

~168!

It is to be stressed that the octet-type contributions can
@otherwise they would be 1/as(m) enhanced in the vecto
case#. This prediction should be compared with the one e
pected in NRQCD. Within the standard~perturbativelike!
power counting, the same prediction is obtained in NRQC
However, if one countsas(m);v2 as was done in@32#, the
contribution due to the octet matrix elements is of the sa
order as the corrections obtained above and it should
taken into account in the vector case. Therefore, in princip
one is able to check the theory and/or the power counting
an example, takingmb55 GeV we get for theY(2S) and
Y(3S) states of the bottomonium systemR2

Y/R3
Y.1.3,

which is close~within 10% accuracy! to the experimental
central value of about 1.4 that one can get from@35#. Let us
also notice that, since Img1(1S0)/Im f 1(1S0)
2Im ggg(1S0)/Im f gg(1S0)5O„as(m)…, up to corrections of

orderv3 we find thatRn
P , i.e., the ratio between hadronic an

electromagnetic decay widths for pseudoscalar quarkoni
is the same for all radial excitations. However, it is not t
purpose of this work to carry out a comprehensive and
tailed phenomenological analysis, which is left to a sub
quent publication.

VIII. CONCLUSIONS

We have obtained the imaginary part of the pNRQC
Hamiltonian up toO(1/m4) in the nonperturbative regime
(k*LQCD@mv2). The expressions are given in Eqs.~87!–
~89!. As for any quantum-mechanical Hamiltonian, the p
RQCD Hamiltonian is also defined up to a unitary transf
mation. An alternative expression, related to the previous
by a unitary transformation, can be found in Sec. V D.

We have applied our results to calculate the inclusive
cay widths to light hadrons, photons and leptons up
O(c„as(m)…mv33(LQCD

2 /m2,E/m)) for S-wave heavy
quarkonium and up toO(c„as(m)…mv5) for P-wave heavy
quarkonium. These are given in Eqs.~141!–~146! and are the
8-28
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main result of the paper. An alternative way to present i
given in Sec. VI C, where all the NRQCD matrix elemen
entering in quarkonium decays up to this order are expres
in terms of the quarkonium wave functions at the origin a
six nonperturbative gluonic correlators, which are flavor a
state independent, and for this reason may be called un
sal. The wave-function dependence factorizes in all th
expressions. It is particularly remarkable that this is also t
for the octet matrix elements.

We derived our expressions in two different ways: in S
III under the general assumptionLQCD&k and in Sec. V
under the particular assumptionk@LQCD. In the first case,
we matched NRQCD directly to pNRQCD in an entire
nonperturbative one-step procedure, based on the Ha
tonian formulation of NRQCD. In the second case,
matched NRQCD to pNRQCD in a two-step procedure,
first perturbative, the second nonperturbative, but still wit
clear diagrammatic interpretation based on the multipole
pansion. The fact that these two completely different ways
deriving the pNRQCD Hamiltonian give the same answer
to a unitary transformation can be considered a stringent
on the correctness of the result. In Sec. VI D we also chec
that the evolution equations of our universal parameters
consistent at leading-log accuracy with the known evolut
equations of the NRQCD matrix elements.

In Sec. VII we considered the phenomenological implic
tions of our results. There exist 14 charmonium and bo
monium states below threshold. We expect our results to
applicable to most of these states. The exceptions are, o
one hand, theY(1S), which is commonly understood as
weak-coupling state~i.e., k@E*LQCD), and, on the other
hand, states that are too close to theD-D̄ threshold for char-
monium or to theB-B̄ threshold for bottomonium, like
maybe, thec(2S). Going from NRQCD to pNRQCD re-
duces the number of nonperturbative parameters neede
calculate the inclusive decay widths associated with th
states by about a factor of 2. The situation is even bette
we consider ratios of hadronic and electromagnetic de
widths. Since the wave-function dependence factorizes
drops out in the ratios. It follows that only six univers
parameters, which depend only on the light degrees of f
dom of QCD, are needed. The already known data will
sufficient to fix all these parameters, to allow checks and
make new predictions. Moreover, suitable combinations
ratios give rise to novel parameter-free, model-independ
predictions. We considered some of them in Sec. VII.

The nonperturbative universal parameters that we h
introduced do not necessarily need to be fitted to the exp
mental data. We provided expressions for them in terms
correlators of gluonic fields. This allows for an eventu
evaluation on the lattice. These parameters may also be
tained from QCD vacuum models@36#. We note that, once
they become fixed, our results make the evaluation
NRQCD octet matrix elements possible from properties
the wave functions at the origin. Hence, any potential mo
that leads to definite wave functions@37# will provide defi-
nite results for these matrix elements. Nevertheless, it sh
be pointed out that, if we wish to obtain the NRQCD mat
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elements given in Eqs.~147!–~150! with the aforementioned
accuracy, any potential model to be used here must be
sistent with the structure of the potential derived fro
NRQCD in terms of Wilson loops in Refs.@14,15#. In fact,
the wave functions defined in this paper can also be co
puted in a model-independent way without resorting to d
fitting. This is so because our wave functions correspond
the solution of a Schro¨dinger equation where the potentia
are given in terms of expectation values of Wilson loops w
suitable field insertions. Therefore, once lattice simulatio
are provided for the potentials@38#, the wave function can be
obtained unambiguously without any model dependence

Since our method reduces the number of unknown par
eters with respect to NRQCD, we expect it to become
creasingly relevant as the number of needed NRQCD ma
elements increases. This seems to be necessary in the c
lation of charmonium decay widths, where the nonrelativis
expansion converges slowly. Indeed, higher-order opera
have been considered recently in Refs.@39,40#. In Appendix
B, we give the general matching formula for the NRQC
matrix elements to the pNRQCD results without goi
through the whole matching procedure outlined in the m
body of the paper.

We also addressed, mainly in Sec. IV B, the issue of
power counting in NRQCD in the nonperturbative case.
believe that our formalism provides a suitable theoreti
framework to study it. The power counting of NRQCD is n
knowna priori in the nonperturbative regime and it could,
principle, be different, depending on each dynamical syst
This is particularly transparent in pNRQCD. There, the p
tentials are functions ofr andLQCD. Therefore, as the typi-
cal value ofr changes from system to system, one sho
accordingly assign a different size to each given potent
Moreover, having expressed the NRQCD matrix element
terms of wave functions and universal correlators, we dis
tangled the soft scalek, now entering in the wave function
squared, from theLQCD/m andE/m corrections. In fact, this
is why we can construct ratios of convenient decay ra
where thek dependence drops, providing a more constrain
set of relations. For these ratios the fixing of the pow
counting reduces to the evaluation of the correlators, wh
taking into account possible enhancement effects due to
NRQCD matching coefficients.

Finally, although in the present paper we focused on
clusive decays to light hadrons, there should be no conc
tual problem,a priori, in considering the NRQCD matrix
elements that appear in heavy quarkonium production.
also expect there a significant reduction in the number
nonperturbative parameters. In particular, our formalism m
shed some light on the power-counting problems that app
in the heavy quarkonium polarization data@28#.
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APPENDIX A: FOUR-FERMION OPERATORS

Here we list the relevant four-fermion operators of dime
sion 6 and 8, as taken from Ref.@1#,

O1~1S0!5c†x x†c, ~A1!

O1~3S1!5c†sx•x†sc, ~A2!

O8~1S0!5c†Taxx†Tac, ~A3!

O8~3S1!5c†sTax•x†sTac, ~A4!

O1~1P1!5c†S 2
i

2
DI Dx•x†S 2

i

2
DI Dc, ~A5!

O1~3P0!5
1

3
c†S 2

i

2
DI•sDxx†S 2

i

2
DI•sDc,

~A6!

O1~3P1!5
1

2
c†S 2

i

2
DI3sDx•x†S 2

i

2
DI3sDc,

~A7!

O1~3P2!5c†S 2
i

2
DI ( isj )Dxx†S 2

i

2
DI ( is j )Dc,

~A8!

P1~1S0!5
1

2Fc†xx†S 2
i

2
DI D 2

c1H.c.G , ~A9!

P1~3S1!5
1

2 Fc†sx•x†sS 2
i

2
DI D 2

c1H.c.G ,
~A10!

P1~3S1 , 3D1!5
1

2 Fc†s ixx†s j S 2
i

2D 2

DI ( iDI j )c1H.c.G ,
~A11!

O8~1P1!5c†S 2
i

2
DI DTax•x†S 2

i

2
DI DTac,

~A12!

O8~3P0!5
1

3
c†S 2

i

2
DI•sDTaxx†S 2

i

2
DI•sDTac,

~A13!

O8~3P1!5
1

2
c†S 2

i

2
DI3sDTax•x†S 2

i

2
DI3sDTac,

~A14!

O8~3P2!5c†S 2
i

2
DI ( is j )DTaxx†S 2

i

2
DI ( is j )DTac,

~A15!

P8~1S0!5
1

2Fc†Taxx†S 2
i

2
DI D 2

Tac1H.c.G ,
~A16!
03401
-
P8~3S1!5

1

2 Fc†sTax•x†sS 2
i

2
DI D 2

Tac1H.c.G ,
~A17!

P8~3S1 , 3D1!5
1

2 Fc†s iTaxx†s j S 2
i

2D 2

DI ( iDI j )Tac

1H.c.G , ~A18!

where we use the conventional notationT( i j )[(Ti j 1Tji )/2
2Tkkd i j /3. The electromagnetic operators are defined as
lows:

Oe.m.~
1S0!5c†xuvac&^vacux†c, ~A19!

Oe.m.~
3S1!5c†sxuvac&^vacux†sc, ~A20!

Oe.m.~
1P1!5c†S 2

i

2
DI Dxuvac&•^vacux†S 2

i

2
DI Dc,

~A21!

Oe.m.~
3P0!5

1

3
c†S 2

i

2
DI•sDxuvac&^vacux†S 2

i

2
DI•sDc,

~A22!

Oe.m.~
3P1!5

1

2
c†S 2

i

2
DI3sDxuvac&•^vacux†S 2

i

2
DI3sDc,

~A23!

Oe.m.~
3P2!5c†S 2

i

2
DI ( isj )Dxuvac&^vacux†S 2

i

2
DI ( isj )Dc,

~A24!

Pe.m.~
1S0!5

1

2 Fc†xuvac&^vacUx†S 2
i

2
D2Dc1H.c.G ,

~A25!

Pe.m.~
3S1!5

1

2 Fc†sxuvac&^vacUx†sS 2
i

2
D2Dc1H.c.G ,

~A26!

Pe.m.~
3S1 , 3D1!5

1

2 Fc†s ixuvac&^vacux†sj S 2
i

2D 2

3DI ( iDI j )c1H.c.G , ~A27!

whereuvac& is the vacuum state of QCD.

APPENDIX B: DIRECT MATCHING TO pNRQCD
OF NRQCD MATRIX ELEMENTS

In principle, it is possible to match directly to pNRQC
matrix elements of NRQCD that involve operators differe
from the HamiltonianH. In this way NRQCD matrix ele-
ments can be expressed in terms of nonlocal correlators w
out going through the full matching procedure outlined in t
main body of the paper. This is useful if no iteration of the
8-30
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NRQCD operators is necessary in the matching calculat
In order to do this it is necessary to have an explicit expr
sion for the stateu0;x1 ,x2&. Up toO(1/m) it can be found in
Eq. ~36!. This way of proceeding will be particularly usefu
in order to work out higher-order operators that will appe
in going beyondO(mv5) in the expansion of the heav
quarkonium decay width. Higher-order operators appea
be necessary for charmonium decays, where the nonrel
istic expansion converges slowly, assumingvc

2;0.3.
The master equation, whereuH& represents a generi

heavy quarkonium state at rest,P50, with quantum num-
bersn, j, l, ands as defined in Ref.@1#, is

^HuOuH&5
1

^P50uP50&E d3r E d3r 8E d3R

3E d3R8^P50uR&^n jlsur &F ^0;x1x2u

3E d3jO~j!u0;x18x28&G^R8uP50&^r 8un jls&,

~B1!
03401
n.
-

r

to
iv-

where r5x12x2 , r 85x182x28 , R5(x11x2)/2, and

R85(x181x28)/2 ~note that^R8uP50&51 and ^P50uP50&
5*d3x). As an example, let us consider here the NRQC
matrix element

^xQ~n01!uFe.m.~
3P0!uxQ~n01!& ~B2!

of the dimension 9 operator

Fe.m.~
3P0!5

1

6
c†s•gExuvac&^vacux†s•Dc1H.c.,

~B3!

which is relevant to describing the electromagnetic de
xc0→gg at ordermv7 accuracy. Owing to spin symmetry
the same matrix element enters into thexc2→gg decay.
These contributions have recently been considered in@39#. In
the Hamiltonian formalism of Sec. III the matrix eleme
~B2! is written as
.

^xQ~n01!uFe.m.~
3P0!uxQ~n01!&5

1

^P50uP50&
2E d3r E d3r 8E d3RE d3R8^P50uR&^n011ur &

3F E d3j^0;x1x2u
c†s•gExuvac&^vacux†s•Dc

6
(j)u0;x18x28&G^r 8un011&^R8uP50&, ~B4!

whereun011& is the Schro¨dinger wave function of the statexQ(n01). Now we expand the state^0;x1x2u according to Sec.
III C. The first nonvanishing contribution comes from the 1/m correction given in Eq.~36!. Inserting that expression into Eq
~B4! and keeping in mind that only the term with the derivative projects onto theun011& state, we obtain

^xQ~n01!uFe.m.~
3P0!uxQ~n01!&5

1

^P50uP50&
2E d3r E d3r 8E d3RE d3R8^P50uR&

1

m
^n011ur &

3 (
k5” 0

2“x1
•

(0)^0ugE1uk& (0)1“x2
•

(0)^0ugE2
Tuk& (0)

~E0
(0)2Ek

(0)!2
(0)^k;x1x2u

3E d3j
c†s•gExuvac&^vacux†s•Dc

6
~j!u0;x18x28&

(0)^r 8un011&^R8uP50&

52
2

3m(
k5” 0

(0)^0ugE,8uk& (0) (0)^kugE,uvac&^vacu0& (0)

~E0
(0)2Ek

(0)!2
^n011us,

“

,8d (3)~r !s•“un011&.

~B5!
the
In the second equality we have made use of Eq.~53! and of
the Wick theorem. Finally, from the fact thatd (3)(r )u0& (0)

5d (3)(r )1c /ANcuvac& and from Eq.~73! we get

^xQ~n01!uFe.m.~
3P0!uxQ~n01!&52CA

uRn1
(0)8~0!u2

p

E1

m
,

~B6!
or equivalently, using Eq.~151!,

^xQ~n01!uFe.m.~
3P0!uxQ~n01!&

m^xQ~n01!uOe.m.~
3P0!uxQ~n01!&

52
2

3

E 1

m2 . ~B7!

Similar considerations may in principle also be applied to
matrix elements needed at relative orderv4 for S-wave de-
8-31
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cays. For a complete set of these operators and for cons
ations concerning their relevance in phenomenological s
ies, see Ref.@40#.

APPENDIX C: RUNNING EQUATIONS
OF THE MATCHING COEFFICIENTS

The running equations obtained in Appendix B.3 of R
@1# for the NRQCD four-fermion operators give us inform
tion on the running of their matching coefficients. The ru
ning equations read as follows:

n
d

dn
Im g1~1S0!5

8

3
Cf

as

p
Im f 1~1S0!, ~C1!

n
d

dn
Im g1~3S1!5

8

3
Cf

as

p
Im f 1~3S1!, ~C2!

n
d

dn
Im ge.m.~

1S0!5
8

3
Cf

as

p
Im f e.m.~

1S0!, ~C3!

n
d

dn
Im ge.m.~

3S1!5
8

3
Cf

as

p
Im f e.m.~

3S1!, ~C4!

n
d

dn
Im g8~1S0!5

4

3 S 2Cf2
CA

2 D as

p
Im f 8~1S0!, ~C5!

n
d

dn
Im g8~3S1!5

4

3 S 2Cf2
CA

2 D as

p
Im f 8~3S1!, ~C6!

n
d

dn
Im f 1~1P1!5

8

3
Cf S Cf2

CA

2 D as

p
Im f 8~1S0!, ~C7!

n
d

dn
Im f 1~3P2!5

8

3
Cf S Cf2

CA

2 D as

p
Im f 8~3S1!, ~C8!

n
d

dn
Im f 1~3P1!5

8

3
Cf S Cf2

CA

2 D as

p
Im f 8~3S1!, ~C9!

n
d

dn
Im f 1~3P0!5

8

3
Cf S Cf2

CA

2 D as

p
Im f 8~3S1!, ~C10!

n
d

dn
Im f 8~1P1!52

8

3

as

p
Im f 1~1S0!2

4

3 S 4Cf23
CA

2 D as

p

3Im f 8~1S0!, ~C11!

n
d

dn
Im f 8~3P2!52

8

3

as

p
Im f 1~3S1!2

4

3 S 4Cf23
CA

2 D as

p

3Im f 8~3S1!, ~C12!

n
d

dn
Im f 8~3P1!52

8

3

as

p
Im f 1~3S1!2

4

3 S 4Cf23
CA

2 D as

p

3Im f 8~3S1!, ~C13!
03401
er-
d-

.

-

n
d

dn
Im f 8~3P0!52

8

3

as

p
Im f 1~3S1!2

4

3 S 4Cf23
CA

2 D as

p

3Im f 8~3S1!, ~C14!

and 0 otherwise.
The imaginary pieces of the dimension 6 operator mat

ing coefficients@ f (S)# do not run at leading nonvanishin
order:

n
d

dn
Im f ~S!50. ~C15!

Therefore, the above equations can be easily solved in
case. We obtain at leading nonvanishing order

Im g1~1S0!~n!5Im g1~1S0!~m!2
16

3b0
Cf Im f 1~1S0!~m!

3 lnF as~n!

as~m!G , ~C16!

Im g1~3S1!~n!5Im g1~3S1!~m!2
16

3b0
Cf

3Im f 1~3S1!~m!lnF as~n!

as~m!G , ~C17!

Im ge.m.~
1S0!~v !5Im ge.m.~

1S0!~m!2
16

3b0
Cf

3Im f e.m.~
1S0!~m!lnF a~v !

a~m!G , ~C18!

Im ge.m.~
3S1!~v !5Im ge.m.~

1S0!~m!2
16

3b0
Cf

3Im f e.m.~
3S1!~m!lnF a~v !

a~m!G , ~C19!

Im g8~1S0!~n!5Im g8~1S0!~m!2
8

3b0
S 2Cf2

CA

2 D
3Im f 8~1S0!~m!lnF as~n!

as~m!G , ~C20!

Im g8~3S1!~n!5Im g8~3S1!~m!2
8

3b0
S 2Cf2

CA

2 D
3Im f 8~3S1!~m!lnF as~n!

as~m!G , ~C21!

Im f 1~1P1!~n!5Im f 1~1P1!~m!2
16

3b0
Cf S Cf2

CA

2 D
3Im f 8~1S0!~m!lnF as~n!

as~m!G , ~C22!
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Im f 1~3P2!~n!5Im f 1~3P2!~m!2
16

3b0
Cf S Cf2

CA

2 D
3Im f 8~3S1!~m!lnF as~n!

as~m!G , ~C23!

Im f 1~3P1!~n!5Im f 1~3P1!~m!2
16

3b0
Cf S Cf2

CA

2 D
3Im f 8~3S1!~m!lnF as~n!

as~m!G , ~C24!

Im f 1~3P0!~n!5Im f 1~3P0!~m!2
16

3b0
Cf S Cf2

CA

2 D
3Im f 8~3S1!~m!lnF as~n!

as~m!G , ~C25!

Im f 8~1P1!~n!5Im f 8~1P1!~m!1F2 Im f 1~1S0!~m!

1S 4Cf23
CA

2 D Im f 8~1S0!~m!G
3

8

3b0
lnF as~n!

as~m!G , ~C26!

Im f 8~3P2!~n!5Im f 8~3P2!~m!1F2 Im f 1~3S1!~m!

1S 4Cf23
CA

2 D Im f 8~3S1!~m!G
3

8

3b0
lnF as~n!

as~m!G , ~C27!

Im f 8~3P1!~n!5Im f 8~3P1!~m!1F2 Im f 1~3S1!~m!

1S 4Cf23
CA

2 D Im f 8~3S1!~m!G
3

8

3b0
lnF as~n!

as~m!G , ~C28!

Im f 8~3P0!~n!5Im f 8~3P0!~m!1F2 Im f 1~3S1!~m!

1S 4Cf23
CA

2 D Im f 8~3S1!~m!G
3

8

3b0
lnF as~n!

as~m!G , ~C29!

where we have chosenm as the starting point of the evolu
tion equation; the matching conditions at this scale atO(as

2)
can be read from Ref.@1#.
03401
APPENDIX D: REGULARIZING PRODUCTS
OF DISTRIBUTIONS

In the intermediate steps of the calculation we find
defined products of distributions. We first show how dime
sional regularization~DR! makes sense out of these expre
sions by setting them to zero, and next how they amoun
renormalizations of local terms when a cutoff regularizati
is used instead.

Consider, first, the product of two delta functions:

d (3)~r !d (3)~r !5E dDpE dDp8E dDp9up&^pud (3)~r !up8&

3^p8ud (3)~r !up9&^p9u

5E dDpE dDp8E dDp9up&^p9u

50, ~D1!

since the integral overp8 has no scale.
Consider next

d (3)~r !
1

r s5E dDpE dDp8E dDp9up&^pud (3)~r !up8&

3^p8u
1

r s up9&^p9u

5E dDpE dDp8E dDp9up&
const

up82p9u32s
^p9u

50, ~D2!

since, upon the translationp8→p81p9, the integral overp8
has no scales.

Alternatively, if we use a cutoff regularization, for in
stance by smoothing the delta in momentum space, like

^pud (3)~r !up8&51→e2
(p2p8)2

L2 , ~D3!

we obtain

d (3)~r !d (3)~r !;
pA2p

4
L3d (3)~r !2

p

4
Ap

2
L@$“2,d (3)~r !%

12“ id (3)~r !“ i #1OS 1

L D , ~D4!

which can be removed by local counterterms. Hence
implements nothing but a suitable subtraction prescripti
Analogously, it is easy to see thatd (3)(r )/r s for s
50,1,2, . . . reduces to local terms.

APPENDIX E: UNITARY TRANSFORMATIONS

It is well known that quantum-mechanical Hamiltonian
which are related by unitary transformations, lead to
same physics. This fact is particularly relevant to quantu
mechanical Hamiltonians that are derived from a fie
8-33
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theory, which is our case. It is also well known that t
quantum-mechanical potentials that are obtained from Q
depend on the gauge one uses in the calculation~this is also
so for QCD in perturbation theory!, but physical observable
computed with either potential turn out to be the same. I
perhaps not so well known that the potentials obtained in
gauge can be related to the ones obtained with a diffe
gauge by means of a unitary transformation. In fact the a
trariness in the form of the potentials is not only due
gauge dependence. It depends in general on the way
carries out the matching calculation. Any correct result
related to any other one by means of a unitary transfor
tion.

We shall use this fact here to prove that the result obtai
in Sec. V D is equivalent to the one obtained in Sec. IV A

Consider the following unitary transformation:

U5ei $r ,p%L/m. ~E1!

Consider next a delta function in the Hamiltonian:

U†
d (3)~r !

m2
U;

d (3)~r !

m2
2

iL

m3@$r ,p%,d (3)~r !#, ~E2!

which onS-wave states reduces to

U†
d (3)~r !

m2
U;

d (3)~r !

m2
1

6L

m3 d (3)~r !. ~E3!

This shows that a suitable unitary transformation may ind
terms atO(1/m3) proportional touf(0)u2. Of course, phys-
ics should not change. Iff(r ) is an eigenfunction ofh, then
f̃(r )5U†f(r ) is an eigenfunction ofh̃5U†hU. Then

f̃~0!5e2 i (2rp23i )L/mf~0!@11O~ ur u!#ur505e23L/mf~0!.
~E4!

Clearly,

S 1

m2 1
6L

m3 D uf̃~0!u2;
1

m2 uf~0!u2. ~E5!

We will illustrate this issue further with an example. Rec
the two different results, namely, Eqs.~116! and ~117!, we
obtained from the first diagram of Fig. 2 at second order
the expansionmv2/LQCD. More explicitly, from Eq.~116!
we get a real result,
tic
-

Z

03401
D

s
e
nt
i-

ne
s
a-

d

e

l

n

2
1

E2hs

4“2

m2 E0

`

dtt2^gE~ t !•gE~0!&
1

E2hs
, ~E6!

and from Eq.~117! a result containing an imaginary part,

1

E2hs
2S r•

~“Vs!

m
13i f 1~2S11SS!

d (3)~r !

m3 D
3E

0

`

dtt2^gE~ t !•gE~0!&
1

E2hs
. ~E7!

Both results are correct. They are indeed related by the
lowing unitary transformation:

U5ei $r ,p%NcE2 /m,

E25
1

Nc
E

0

`

dtt2^gE~ t !•gE~0!&, ~E8!

and hence lead to the same decay width. This can eve
further confirmed by an explicit calculation in the case of t
Coulomb potential, since the induced terms then retain
same form as the original ones.

The unitary transformation, that brings the result of S
IV A to the one of Sec. V D reads

U5e2 i $r ,p%q2/m2
,

q25
1

9
~E 3

(2,t)1E 3
(2,e.m.)2 Ē3

(2,t)2 Ē3
(2,e.m.)!. ~E9!

Clearly this transformation also reshuffles 1/m real potentials
into 1/m3 real potentials. This means that, in the more co
servative counting considered in Sec. IV B, the whole se
potentials up toO(1/m3), which are formally given in Sec
III B, are expected to be relevant to calculate the wave fu
tion at the origin with an accuracy that matches the NNL
terms in Eqs.~141!–~146!.
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